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CHAPTER 1 

PERSPECTIVE: MYOCARDIAL ISCHEMIA-REPERFUSION INJURY  

1. Clinical Significance: Coronary Heart Disease and Myocardial Ischemia-

reperfusion Injury 

Cardiovascular disease (CVD) is the leading cause of mortality in the 

industrialized world; in 2009, CVD accounted for nearly one in every three deaths in the 

United States.  Half of these deaths are due to acute myocardial infarction or ‘heart 

attack’, caused by obstruction of a coronary artery; each year, ~ 635,000 Americans 

have a new heart attack, and ~ 280,000 suffered from recurrent attacks, in addition to 

~150,000 patients with silent presentation (1). 

Since infarct size (that is, amount of irreparable damage caused to the heart by 

prolonged obstruction of a coronary artery) is the most important independent predictor 

of post-infarct mortality and long-term prognosis, shortening of ischemic duration by 

reperfusion (reintroduction of blood flow as soon as possible to the ischemic 

myocardium) is the therapeutic target (2-4).  Therefore, the current clinical strategy for 

managing acute myocardial infarction is restoration of blood flow by either primary 

percutaneous coronary intervention (PCI), coronary thrombolysis or coronary artery 

bypass grafting (CABG).  Reintroduction of blood supply to ischemic regions, however, 

paradoxically exacerbates lethal cardiomyocyte death and significantly attenuates the 

benefits of reperfusion, a phenomenon termed as lethal myocardial ischemia-

reperfusion (IR) injury (5).  With decades of efforts by clinicians and scientists, there is 

still lack of approved treatment, beyond early reperfusion, to reduce damage caused by 

heart attack.  Novel strategies are therefore urgently needed to address myocardial 

ischemia-reperfusion injury.  To achieve this goal, a thorough understanding of the 
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pathophysiology of ischemia-reperfusion injury is required.    

2. Current Knowledge 

2.1 Key mediators of ischemia-reperfusion injury  

2.1.1 pH and  calcium overload   

Early effects of ischemia (i.e., inadequate delivery of oxygen to myocardium after 

coronary occlusion) lead to a rapid conversion from aerobic to anaerobic glycolysis and 

accumulation of lactate, insufficient removal of carbon dioxide (CO2), and impaired 

production of adenosine triphosphate (ATP) (6-9).  The decrease in intracellular pH can 

be observed 15 seconds after ischemia and, within 15 minutes, pH dropped to ~6.2 

from the normal value of ~7.05 (8).  Sarcolemmal acidosis drives the Na+/H+ exchanger 

(NHE) to transport hydrogen ions out of cells at the expense of sodium entry.  The low 

ATP levels make Na+/K+ ATPase unable to work efficiently to pump sodium out of the 

cell, which results in sodium accumulation and activation of Na+/Ca++ exchanger (NCX) 

(10).  Additionally, low ATP levels disrupt the activity of the sarcolemmal Ca++ pump and 

sarcoplasmic reticulum Ca++ ATPase (SERCA) required to maintain low cytoplasmic 

Ca++ concentration; both significantly contribute to calcium overload during ischemia 

(10-12).  Among the multiple deleterious consequences of calcium overload, the 

mitochondrion is the major target due to its capacity as an intracellular Ca++ reservoir 

and expression of multiple calcium-handling enzymes (13).  Deposition of Ca++ into 

mitochondria further aggravates impaired oxidative phosphorylation and ATP generation 

and facilitates mitochondrial swelling.  However, the  mitochondrial permeability 

transition pore (mPTP) – the large, nonspecific conductance channel discussed in more 

detail in Section 2.1.4 – remains closed due to low intracellular pH (14).   

Following reperfusion, there is a rapid wash-out of extracellular hydrogen ions; 
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the intracellular acidosis is also quickly rectified resulting in an increase in pH.  In 

addition, with repletion of oxygen and metabolic substrates to the previously ischemic 

area, the generation of ATP is resumed.  Reperfusion and the fast correction of 

intracellular acidosis are, however, also accompanied by adverse events.  More 

specifically, normalization of pH reactivates many direct and indirect calcium-handling 

proteins that are functionally inhibited in ischemic phase, including NHE, NCX, SERCA 

and Ryanodine receptors (RyRs) (15-18).  Firstly, there is a substantial increase in Ca++ 

influx due to reversed mode of NCX and prolonged low Na+/K+ ATPase and Ca++ 

ATPase activity.  Secondly, resumption of ATP synthesis may activate rapid 

sarcoplasmic reticulum (SR) Ca++ cycling and cytosolic Ca++ oscillation through RyR, 

when SR storage capacity is exceeded.  As a result, Ca++ activates calcium-dependent 

protease and kinases system such as calpains, phospholipases and Ca++/calmodulin- 

dependent kinase and these activated signaling pathways favor cardiomyocyte death.  

Thirdly, further increased 

sarcoplasmic Ca++ and neutralizing 

pH accelerates Ca++ binding to the 

contractile apparatus and causes 

hypercontracture and dysfunction or  

‘stunning’ of injured myocardium.  

Finally, restoration of pH, in the 

presence of calcium overload and 

reactive oxygen species (ROS: 

discussed in Section 2.1.3) triggers a 

potentially lethal event – the opening of mPTP (19, 20) (Figures 1-1 and 1-2).   
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2.1.2 Endoplasmic reticulum (ER) stress   

ER [or, in muscle, the sarcoplasmic reticulum (SR)] is the tubular endosome 

network system of eukaryotic cells.  ER performs the housekeeping functions that 

maintain cell survival, including protein synthesis, lipid biosynthesis, folding and 

posttranslational modification of proteins, membrane synthesis and trafficking, calcium 

storage and release, and unfolded protein responses in physiological and pathological 

conditions (21-24).  Additionally, SR in cardiac muscles carries out more cell-specific 

functions such as control of calcium release that is essential to excitation-contraction 

coupling (22).  The characteristic unfolded protein responses (UPR) of ER stress is 

mediated through three key pathways: i) arrest of translation through phosphorylation of 

eukaryotic initiation factor 2-α decreases loading burden to ER; ii) activation of 

activating transcription factor 6 upregulates expression of ER stress-sensing genes 

such as chaperon proteins and ER-associated degradation proteins; and iii) expression 

Solutes influx & efflux 
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of cleaved mRNA of X-box binding protein 1 transcription factor increases the 

expression of proteins that participate in protein folding, transporting and degradation 

(21, 22, 25).  Importantly, any insults that result in loss of energy balance and/or nutrient 

homeostasis causes ER stress (21).  For example, in myocardial ischemia-reperfusion 

injury, the depletion of oxygenation and glucose, drastic increase in ROS production 

and perturbation in ATP supply and calcium homeostasis lead to accumulation of 

misfolded proteins in ER, which is buffered by the initiation of UPR (21, 26, 27). 

2.1.3 Reactive oxygen species (ROS) and oxidative stress  

The major contributors of oxidative stress in ischemia-reperfusion injury are the 

family of reactive oxygen species including the superoxide anion (O2
.-), hydroxyl radical 

(HO.), lipid radicals, and nitric oxide (NO), as well as non-radical species including 

hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hypochlorous acid (HOCl).  In 

addition, O2
.- is unstable and can react with NO to form reactive nitrogen species (RNS); 

the cytotoxicity induced by RNS is known as nitrosative stress (28, 29).  Under normal 

physiological conditions, excess ROS is efficiently removed by the antioxidant system, 

e.g., superoxide dismutase quickly catalyzes O2
.- to H2O2, which is further converted to 

H2O by catalase (30).  However, under pathophysiological conditions such as IR injury, 

ROS production is increased (as described below) and the endogenous antioxidant 

defenses are overwhelmed.  

The most important source of ROS in cardiomyocytes, particularly in IR injury, is 

from mitochondria.  During ischemia, the interruption in blood flow and oxygen supply 

depletes metabolic substances, shuts down the tricarboxylic acid (TCA) cycle, and 

increases the ratio of NAD+/NADH.  These alterations are associated with the 

generation of moderate amounts of O2
.- from complexes I (NADH dehydrogenase) and 
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III of mitochondrial electron transfer chain (31), although complex II (succinate 

dehydrogenase) may also play a role (32).  In contrast, the pathologic component of 

oxidant stress occurs at reperfusion.  Reintroduction of oxygen to ischemic tissue 

triggers a burst in ROS production, occurring via different sources and mechanisms 

than in the ischemic episode (33).  The proposed model is that calcium overload, 

normalization of intracellular pH, opening of mPTP, the reactivation of TCA cycle, the 

availability of reducing electrons from NADH and reduced form of FADH2 and 

restoration of molecular oxygen work simultaneously to promote ROS spikes (19, 29, 31, 

33-35).  Of note, the reperfusion-associated burst in ROS production amplifies mPTP 

formation and, in turn, exacerbates ROS generation, resulting in a vicious cycle of ROS-

induced ROS release (19, 36) (Figures 1-1 and 1-2).  Excess ROS produced in this 

manner can cause direct damage to multiple cellular macromolecules, including 

proteins, lipids, and DNA, and can be cytotoxic (37, 38). 

2.1.4 Mitochondrial dysfunction and the mPTP: the epicenter of ischemia-

reperfusion injury   

There is growing evidence suggesting that the network of mediators contributing 

to myocardial ischemia-reperfusion injury converges on mitochondria (39).  The 

mitochondrion can be considered both the ‘victim’ or target and the ‘executor’ of 

myocardial IR injury.  The deleterious molecular events that are relevant to 

mitochondrial dysfunction and occur in the context of IR injury include, but are not 

limited to, i) inhibition of electron transfer chain function and oxidative phosphorylation; ii) 

loss of mitochondrial membrane potential; iii) calcium overload within mitochondria; iv) 

ROS production and ROS-induced ROS release; and v) prolonged opening of mPTP 

and its consequences, such as loss of proton gradient, matrix swelling, release of 
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proapoptotic proteins, (i.e., cytochrome c)  mitochondrial rupture and irreversible 

cardiomyocyte death (40-42).  

The mPTP is postulated to act as a conductance pore that connects the matrix, 

inner and outer mitochondrial membranes (IMM and OMM), as well as the inter-

membrane space (Figure 1-2).  Although there is functional evidence for the existence 

of the mPTP, morphologic evidence has not been well-established (43-45).  Previous 

studies propose that three vital proteins form the channel of the transition pore: voltage-

dependent anion channel (VDAC, outer membrane protein), adenine nucleotide 

translocase (ANT, inner membrane protein), and cyclophilin D (CYPD, residing in matrix 

as important regulator of pore opening: Figure 1-2) (43).  Recent data imply that none of 

the above-mentioned proteins are indispensable for mPTP-dependent cell death as 

knockout experiments revealed no effects on cell responsiveness to B-cell 

leukemia/lymphoma-2 (Bcl-2) family member-driven apoptosis or other multiple 

apoptotic inducers (44, 46, 47).  mPTP opening is characterized by dissipation of 

mitochondrial transmembrane potential (∆ψm), mitochondrial swelling and rupture of the 

OMM, and massive leakage of intermembrane proteins into cytosol (48). 

2.2 How do cardiomyocytes die? 

Loss of viable cardiomyocytes contributes to pathogenesis of acute myocardial 

infarction and post-ischemic cardiac dysfunction.  There are three major types of cell 

death that play causal roles in myocardial ischemia-reperfusion injury: apoptosis, 

necrosis and macroautophagy (referred as autophagy in this thesis). 

2.2.1 Apoptosis 

Apoptosis or ‘programmed cell death’ is the first defined, controllable form of cell 

death.  It is an energy-dependent and precisely regulated process that is mediated by 
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two pathways: the intrinsic and extrinsic apoptotic pathways.  

The intrinsic pathway (49) starts from mitochondrial release apoptogenic proteins 

in response to apoptotic stimuli.  The well-defined proteins include cytochrome c, 

second mitochondria-derived activator of caspases (SMAC)/direct inhibitor of apoptosis-

binding protein with low pI (DIABLO), apoptosis-inducing factor, etc.  For example, once 

a large quantity of cytochrome c is released into the cytoplasm, it binds with apoptotic-

protease-activating factor-1 along with 2-deoxy-ATP.  This is followed by recruitment of 

procaspase 9 to form the apoptosome (50).  Similar to procaspase 8 activation 

(discussed below), procaspase 9 is activated within the apoptosome and, subsequently, 

cleaves and activates effector procaspases into their functional formats that perform 

suicidal functions.  The classic stimuli that activate the intrinsic pathway include 

depletion of grow factors, nutrient deprivation, hypoxia, oxidative stress, DNA damage 

and chemical and biological toxins.  Release of apoptogenic proteins from mitochondria 

is dependent on the relative activities of two classes of proapoptotic Bcl-2 family 

proteins [BAX (Bcl-2-associated X protein) and BAK (Bcl-2 homologous 

antagonist/killer)] versus the antiapoptotic Bcl-2 proteins (51, 52).  Under conditions of 

stress (including IR), the proapoptotic Bcl-2 proteins predominate; hence, BAX is 

released and translocates to OMM, and, in combination with BAK, forms pore structures 

and triggers cytochrome c release, a process termed as OMM permeabilization (49, 53). 

The extrinsic pathway (49) is initiated by the binding of death ligands to death 

receptors, e.g., Tumor necrosis factor-α (TNF-α) to TNF-α receptor-1 (TNFR-1) and Fas 

ligand to Fas) and subsequent recruitment of cytosolic factors such as procaspase 8.  

Once activated, caspase 8 further cleaves and activates the so-called ‘effector’ 

caspases, 3 and 7, ultimately responsible for cell suicide.  Importantly, the intrinsic and 
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extrinsic pathways are not independent, with crosstalk between the two apoptotic 

pathways mediated by active caspase 8 (49, 54-57). 

Myocardial ischemia-reperfusion is a classical model of apoptotic activation.  

Multiple mechanisms and signaling pathways contribute to cardiomyocyte apoptosis.  

For example, impaired calcium homeostasis in the setting of IR injury, as discussed 

above, leads to activation and translocation of cysteine proteases including calpains (58, 

59).  Activated calpain reportedly interacts with apoptotic proteins contributing to 

formation of the apoptosome and, as a result, promoting cytochrome c leakage and 

apoptotic cardiomyocyte death (60, 61).  It is also proposed that excessive intracellular 

calcium concentration may directly activate the apoptotic machinery (62, 63).  Finally, a 

large body of data, obtained largely from genetic mouse models, suggests that both 

intrinsic and extrinsic apoptotic pathways play a role myocardial IR injury (51-53, 64, 65).  

2.2.2 Autophagy 

Macroautophagy (herein referred as autophagy) is an evolutionally reserved 

house-keeping process that isolates and, ultimately, degrades damaged and 

dysfunctional organelles and protein aggregates.  This process plays a pivotal role in 

maintaining homeostasis for cell survival under many physiologic and pathophysiologic 

conditions (66, 67).  Growing evidence indicates that autophagic machinery is activated 

in myocardial IR injury.  The triggering factors, in the context of IR, include i) nutrient 

deprivation and ATP depletion, ii) induction of Bnip3 (the so-called BH-3 only subfamily 

of Bcl-2 family proteins) via hypoxia and acidosis, iii) calcium overload, iv) massive ROS 

production, v) opening of mPTP, and vi) ER stress.  The hydrolyzed products produced 

by autophagy, such as amino acids, free fatty acids, and substrates, can be used for 

ATP generation during metabolic crisis as occurs in IR injury (68, 69).  However, the 
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precise relationship between autophagy and cell fate (whether it is a mechanism of cell 

death, or whether upregulation of autophagy may be a protective mechanism) is 

controversial and poorly understood (68, 70, 71). 

2.2.3 Necrosis and necroptosis   

Necrosis is the dominant contributor to the loss of viable myocardium under 

conditions of IR.  In the setting of IR injury, long-term opening of the mPTP (Figure 1-2) 

results in dissipation of inner membrane potential, exacerbation of impaired ATP 

generation, and inward diffusion of solutes along electro-chemical gradients.  This 

subsequently draws free water into the matrix, and causes mitochondrial swelling.  If 

swelling is severe and mitochondrial membranes burst, necrosis ensues.  The activated 

calpains (discussed above) degrade important membrane and cellular structural 

proteins, e.g., leading to dysfunction of Na+-K+-ATPase.  If there is no effective 

intervention to recover sodium pump activity, the consequence of severe inhibition of 

Na+-K+-ATPase function is 

intracellular sodium overload, 

cell swelling and 

cardiomyocyte necrosis (72, 

73).  In addition, reducing 

calpain activity significantly 

reduced its destruction of 

sarcolemmal integrity and 

attenuated myocardial 

necrosis in the isolated 

perfused heart model of IR 
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injury (74). 

Necrosis has been traditionally viewed as a passive, unregulated cell death.  

Emerging evidence, however, indicates that a subdivision of necrosis, when death 

receptor activation occurs simultaneously with caspase inhibition, is an active, 

orchestrated process and depends on a signaling cascade still awaiting clarification.  

This regulated form of necrosis is termed as necroptosis (75, 76) (Figure 1-3). 

When death ligand binds to death receptor (77-79), e.g., TNF-α to TNFR-1, it can 

induce both death and survival signaling depending on the participating protein factors 

and the formed complexes.  In the absence of survival signals, the binding of TNF-α to 

TNFR-1 initiates the formation of death complex I that comprises TNFR-1, TNFR1-

associated death domain protein, receptor interaction protein 1 (RIP1), TNF receptor-

associated factor 2, and cellular inhibitor of apoptosis protein1/2 via the interaction 

between respective death domains (DDs) (80).  The cytosolic component of death 

complex I is converted to complex II following the deubiquitination of RIP1, including 

recruited Fas-associated death domain protein via DD-DD interactions, and 

procaspase-8 (via DED (death effector domains)-DED interactions) (54, 75, 76).  

Normally, activated caspase 8 degrades RIP1, while simultaneously activating effector 

caspases 3 and 7 mediating apoptosis.  However, when procaspase 8 activation is 

inhibited, either by genetic maneuvers or pharmacologic antagonists, the preserved 

RIP1 is able to interact with RIP3, and, by as-yet unknown mechanisms, initiates the 

necroptotic pathway (81).  Administration of Necrostatin-1 (82), a pharmacologic 

antagonist of RIP1 blocking its kinase activity, provides cardioprotection against IR 

injury and decreases myocardial necrosis (83, 84) (Figure 1-3).  

Necrosis/necroptosis and apoptosis are not two parallel lines.  Rather, there is 
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cross-talk between the two processes, as shown by the fact that many signaling 

cascades can cause both necrotic and apoptotic cardiomyocyte death.  For example, 

excessive ROS production in IR injury leads to prolonged opening of mPTP, resulting in 

loss mitochondrial potential, arrested ATP generation, matrix swelling and mitochondrial 

structural rupture and, finally, cardiomyocyte necrosis.  Meanwhile, apoptogenic 

proteins from ruptured mitochondria will activate the apoptotic pathway.  A sequential 

model of cell death has been proposed (54, 55): no matter which type of cell death 

comes first, either necrosis or apoptosis, will finally leads to the activation of the other 

type of cell death, e.g., activated BAX and BAK in the apoptotic pathway forms pores in 

the OMM and causes OMM permeabilization.  The released mitochondrial proteins, 

such as cytochrome c, initiate the formation of apoptosome and ultimately activate 

effector caspases, such as caspase 3.  The activated caspase 3 in turn degrades 

important IMM proteins, leading to disruption of mitochondrial potential, matrix swelling, 

and mitochondrial structural rupture; as a result, cardiomyocytes also display the 

necrotic phenotype (35, 54, 55).  

3. Application of Current Mechanistic Insights for Development of 

Cardioprotective Strategies   

3.1 Historical strategies based on key players 

Over the past decades, all of the proposed mediators of myocardial ischemia-

reperfusion injury discussed previously, including dysregulation of pH, sodium-hydrogen 

exchanger and calcium overload, ER stress and ROS generation, have been targeted 

as therapeutic strategies to counteract the detrimental effects of IR and maximize the 

benefits of reperfusion (15, 27, 85-101).  All of these interventions showed benefit (i.e., 

attenuated IR injury and reduced infarct size) in at least some preclinical models and 
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studies.  For example:  In 1970’s, Jennings’s lab reported that IR caused significant 

increase of calcium accumulation in mitochondria (88).  Based on the findings, calcium 

channel blockade with agents such as verapamil were investigated and reported to 

attenuate IR injury (89).  Many of these strategies (including NHE inhibitors and ROS 

scavenger and antioxidants) were developed to the point of being tested in clinical trials 

(102-107).  However, none of the above described strategies have been progressed to 

clinical application and bring benefits to patients suffering from acute or prolonged 

ischemia-reperfusion injury.  

3.2 Conditioning-mediated cardioprotection 

3.2.1 Ischemic conditioning and clinical application 

In 1986, Murry and colleagues opened a new era in the field of cardioprotection.  

Using the canine model, they reported that four cycles of 5 min ischemia each 

separated by 5 min reperfusion applied prior to ischemia significantly reduced the infarct 

size after forty mins of ischemia and four days of reperfusion. They named this 

phenomenon as “ischemic preconditioning” (108).  In the >20 years since its discovery, 

infarct size reduction with ischemic preconditioning has been demonstrated in every 

model and species tested (109-112).  In addition, many small-scale clinical trials in 

multiple institutions confirmed the protective effects of preconditioning on the human 

heart, most notably in patients undergoing coronary artery bypass graft surgery (113, 

114).  However, despite the effectiveness of preconditioning in reducing IR injury, the 

feasibility for clinical application is limited: i.e., myocardial ischemic events are 

unpredictable and ischemic preconditioning is by definition a pretreatment, making this 

strategy impractical in any clinical context except scheduled cardiac surgeries.   

More recently, the concept of conditioning has been expanded to include the 
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concepts of postconditioning and remote conditioning.  Postconditioning was discovered 

by Zhao et al., who observed that stuttered recovery of blood flow to previous ischemic 

myocardium, instead of abrupt reperfusion, protects against lethal myocardial IR injury 

(115).  The advantage of postconditioning is that the intervention is applied at the time 

of reperfusion (rather than as a pretreatment), and has been reported to be as effective 

as preconditioning in reducing myocardial infarct size (115, 116).  Remote conditioning, 

first described in 1993, is the phenomenon whereby brief ischemia applied in a remote 

tissue or organ protects the heart against subsequent sustained ischemia (117).  

Interest in the concept of remote conditioning was increased by two subsequent 

observations.  First, brief periods of skeletal muscle ischemia-reperfusion, implemented 

by the simple technique of inflation-deflation of a blood pressure cuff on an arm or leg, 

was demonstrated to be an effective trigger for cardioprotection (118).  In addition, 

pretreatment is not a requirement; infarct size reduction with remote preconditioning 

(that is, implementation of the remote stimulus during myocardial ischemia), has also 

been demonstrated (119).  Both postconditioning and remote conditioning are attractive 

candidates for clinical application; both strategies have been shown to limit clinical 

markers of IR injury in many (but not all) small Phase II clinical trials (114), and larger 

Phase III trials are currently in progress to evaluate the acute effects and longer-term 

outcomes of patients receiving remote ischemic conditioning protocols prior to PCI 

((120); ClinicalTrials.gov: NCT01665365)).  Results of this latter, ongoing trial are 

expected to be released by December 2014 (ClinicalTrials.gov: NCT01665365).   

3.2.2 Governing mechanisms of conditioning-mediated cardioprotection 

The cellular mechanisms responsible for conditioning-mediated cardioprotection 

remain incompletely understood, and a comprehensive review is beyond the scope of 
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the thesis.  However, in brief, the general, current paradigm (121) for the cardiac 

component of all forms of ischemic conditioning (including pre-, post- and remote 

conditioning) can be summarized as: 

i. conditioning protocols generate autocoid signaling triggers (e.g., bradykinin (122, 

123), adenosine (123-126), opioids (127-129)), which bind to specific G-protein 

coupled receptors (GPCRs) (130-135); 

ii. on binding with respective GPCR, the intracellular signaling mediators are 

recruited and activated (121, 131, 136-144).  Activated signaling cascades 

further phosphorylate downstream targets including, most notably, components 

of the so-called RISK (reperfusion injury survival kinase) (136, 145, 146) and 

SAFE (survival activating factor enhancement) pathways) (121, 147-149), (i.e., 

phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase 1/2, janus 

kinase/signal transducers and activators of transcription 3, endothelial nitric oxide 

synthase, glycogen synthase kinase 3β, mammalian target of rapamycin, p70S6 

kinase, etc (135, 137-143, 150-154);  

iii. ultimately, the protective effects were realized by one or more end-effectors, with 

emphasis on two mitochondrial targets: the mitochondrial ATP-sensitive 

potassium channel (mKATP) (121, 155-159) and the mPTP (160-162). 

3.3 Mitochondria as therapeutic targets 

As discussed above, insights from ischemic conditioning reinforce the hypothesis 

that mitochondria may be the epicenter of ischemia-reperfusion injury and, thus, may be 

the most logical target for potential treatments. 

3.3.1 Mitochondrial ATP-sensitive Potassium channel 

The mKATP channel is a low-conductance inner membrane channel that allows K+ 
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to move into matrix when it is opened.  It is named “ATP-sensitive” because ATP or 

ADP inhibits its opening with a cofactor of Mg++ and GTP or GDP activates it, although 

the structural identity and regulatory mechanisms remain elusive (163).  The 

pathophysiologic significance of mKATP opening in myocardial IR injury and ischemic 

conditioning can be summarized as: i) volume expansion in the matrix and decrease in 

intermembrane space help preserve the low permeability of OMM and prevent ATP 

hydrolysis (163-167); ii) depolarization and reduced ∆ψm reduced Ca++ accumulation, 

thus increasing resistance to mPTP openers (168, 169); and iii) ROS generation by 

mKATP opening is beneficial, which significantly reduces ROS burst during reperfusion, a 

major mechanism for IR injury (170-174).  In the procedures of PCI or CABG, the 

results of two small-scale clinical trials suggested that selective mKATP and non-

selective KATP inhibitors significantly reduced cardiac enzymes release and facilitated 

cardiac functional recovery (175, 176). 

3.3.2 Mitochondrial permeability transition pore (mPTP) 

As discussed in section 2.1.4, unregulated, prolonged opening of mitochondrial 

permeability transition pore, in the context of ischemia-reperfusion injury, causes loss of 

proton gradient, dissipation of mitochondrial membrane potential, matrix swelling, 

release of proapoptotic proteins, mitochondrial structural collapse and irreversible 

cardiomyocyte death (40-42).  Therefore, inhibition of persistent mPTP opening has 

been investigated as a strategy to protect the heart from IR injury.  In 2001, Di Lisa et al., 

reported that cyclosporine A (CsA), a well-known immunosuppressant and mPTP 

opening inhibitor, significantly reduced IR-induced NAD+ depletion and lactate 

dehydrogenase release in rat hearts (177).  Subsequent studies in cell models, isolated 

hearts and in vivo models have documented the beneficial potentials of inhibiting mPTP 
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opening in the setting of IR (161, 178, 179), although negative results were obtained in 

the in vivo rat model when treatment with CsA was begun at 5 min before reperfusion 

(180). 

In two small, pilot clinical trials, administration of CsA has had mixed results.  

When administered prior to thrombolysis, CsA had no effect on peak circulating levels of 

cardiac enzymes (creatine kinase, troponin I: considered surrogate markers of infarct 

size) measured following reperfusion (181).  In contrast, when given immediately before 

PCI, treatment with CsA was associated with a significant reduction in creatine kinase 

release, but a non-significant trend toward lower circulating levels of troponin I, over the 

first 72 hours post-reperfusion (182).  A large, Phase III clinical trial – CIRCUS: 

Cyclosporine and Prognosis in Acute Myocardial Infarction Patients – is currently in 

progress and the results, anticipated in September 2015, are expected to provide clear 

evidence on the role of mPTP inhibition as therapy for IR injury in patients 

(ClinicalTrials.gov: NCT01502774). 
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CHAPTER 2 

BACKGROUND: MITOCHONDRIAL DYNAMICS 

1. Mitochondrial Integrity and Cardioprotection: Expanding the Concepts 

As reviewed in Chapter 1, maintenance of mitochondrial integrity is well-

recognized as a critical determinant of cardiomyocyte viability; as a result, mitochondria 

have emerged as a cellular target in efforts to mitigate IR injury (184-186).  In the past 

decade, the major emphasis has been on the mPTP and modulation of its opening.  

However, there is growing evidence that other aspects related to the preservation of the 

function and structure of mitochondria (186, 187), (in addition to, in combination with, or 

instead of the status of the mPTP) may play a role in cardioprotection.  Recent specific 

attention has focused on mitochondrial dynamics, particularly, mitochondrial fission, as 

a mediator of cell fate in the setting of ischemia-reperfusion injury (188). 

2. Definitions and Key Molecular Mediators  

An important feature of mitochondria is their dynamic nature, where a 

mitochondrion changes its shape to meet the physiological and pathological status of 

the cell (189).  Mitochondrial dynamics is also an important mechanism for mixing of 

mitochondrial DNA and maintenance of a healthy population of mitochondria (190). 

The most commonly observed morphologies are fusion and fission. During fusion, 

adjacent mitochondria join to form an elongated mitochondrial network by membrane 

fusion and content exchange (191-193).  Two groups of GTPases, mitofusins (MFN1/2) 

and optic atrophy 1 (OPA1), reportedly regulate this process by mediating the fusion of 

mitochondrial outer and inner membrane, respectively (192).  In contrast, fission is the 

division of a mitochondrion, resulting in fragmented mitochondria (191).  The ‘master 

regulator’ of mitochondrial fragmentation is Dynamin-related protein 1 (DRP1): this large 
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GTPase typically resides in the cytosol but, during fission, translocates to mitochondria 

and serves as the mechanoenzyme that constricts and cleaves the mitochondrion (194-

196).  Posttranslational modification, most notably phosphorylation/dephosphorylation of 

DRP1, reportedly determines its intracellular distribution and its GTPase activity, 

although recent data suggests that SUMOylation may also play a role (197).  

Dephosphorylation at serine-637 (S637) by the phosphatase calcineurin promotes its 

trafficking to mitochondria, and phosphorylation at the same residue by protein kinase A 

(PKA) retains DRP1 within cytosol (198-200).  Interestingly, activation of a mitochondrial 

phosphatase identified to play a role in necroptosis - phosphoglycerate mutase family 

member 5 (PGAM5) – has been implicated to participate in fission by contributing to 

dephosphorylation DRP1 at S637, resulting in DRP1 accumulation to mitochondria and 

mitochondrial fragmentation (201, 202).  Finally, Fission protein 1 (FIS1) is considered 

to be the primary adaptor of DRP1 at the OMM (191).  However, very recent studies 

suggest that other proteins, specifically mitochondrial fission factor, and mitochondrial 

dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), may work independently of 

FIS1 in recruiting DRP1 and mediating mitochondrial fission in mammalian cells (203-

205).  

3. Current Consensus: Fusion, Fission and Cell Viability 

The current, general consensus, derived largely from experiments conducted in 

non-cardiac cells, is that mitochondrial fusion and the formation of mitochondrial 

networks favors cell survival, while mitochondrial fission and fragmentation is 

associated with cell death (206) (Figure 2-1).  In support of this concept, multiple studies 

have described DRP1 translocation and mitochondrial fragmentation during apoptosis 

(194, 207-210).  Moreover, manipulating mitochondrial dynamics by overexpressing a 
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dominant-negative DRP1 (DRP1K38A or DRP1K38E) or dominant-active MFN2 mutant 

both impaired mitochondrial fission under apoptotic stimuli and inhibited cytochrome c 

release and apoptotic cell 

death (208, 211-213).  The 

role of mitochondrial 

dynamics in cardiac models 

(and, specifically, in IR 

injury) is, however, largely 

unexplored. The limited 

evidence obtained to date 

suggests that: i) the 

pathophysiologic stress of 

myocardial ischemia-reperfusion favors an up-regulation in mitochondrial fission, 

triggered by the well-described increase in intracellular [Ca2+] and Ca2+–dependent 

activation of calcineurin (196, 214, 215); ii) IR injury was accompanied by mitochondrial 

fragmentation; and iii) pre-ischemic inhibition of DRP1 was reported to be 

cardioprotective in both in vivo and ex vivo models (185, 216, 217).  

4. Summary and Hypotheses 

The role of mitochondrial dynamics in regulating cell fate is an enigma that, to 

date remains unresolved. Little work has been done to unequivocally establish whether 

mitochondrial fission simply coincides with, or actively controls, cytochrome c release 

and apoptosis.  In addition, it is not clear whether DRP1 translocation onto 

mitochondrial outer membrane participates in proapoptotic protein release, e.g., 

cytochrome c. Previous studies aimed at defining the pathophysiologic role of 
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mitochondrial fission have, with only a few exceptions, been done in non-cardiac cells 

and non-ischemia-reperfusion models; the role of mitochondrial dynamics in the 

pathogenesis of myocardial ischemia-reperfusion injury is largely unexplored. 

Accordingly, in this project, I have used an established in vitro, immortal cultured 

cardiomyocyte model of hypoxia-reoxygenation (mimicking IR injury) to investigate three 

primary hypotheses:  

i. subcellular redistribution of DRP1 is i) triggered by hypoxia-reoxygenation, and ii) 

plays a mechanistic role in hypoxia-reoxygenation-induced cytochrome c release 

and cell apoptosis; 

ii. inhibition of DRP1 translocation prior to hypoxia is cardioprotective; 

iii. inhibition of DRP1 in a time-frame that is relevant as a therapeutic strategy (i.e., 

begun at reoxygenation) will also attenuate cardiomyocyte death, although 

possibly less robust than pretreatment. 
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CHAPTER 3	

HYPOTHESIS I:  HYPOXIA-REOXYGENATION TRIGGERS SUBCELLULAR 

REDISTRIBUTION OF DRP1 

1. Rationale 

Previous studies have reported that, during apoptosis: (i) DRP1 translocates to 

mitochondria, and (ii) mitochondria become fragmented.  In addition, (iii) antagonizing 

DRP1 via overexpressing dominant-negative DRP1 has been shown to mitigate both 

cytochrome c release from mitochondria and apoptotic cell death in many pathological 

conditions.  However, the vast majority of this research has been conducted in non-

cardiac tissues.  No studies to date have investigated whether myocardial IR injury, a 

classic model of apoptotic activation, will trigger DRP1 accumulation onto mitochondria, 

or whether DRP1 translocation contributes to cytochrome c release and apoptotic 

cardiomyocyte death in the setting of IR injury. 

Accordingly, we hypothesized that hypoxia-reoxygenation (HR, simulating IR 

injury) will trigger DRP1 translocation to mitochondria, and that this translocation is 

associated with cytochrome c release into cytosol, apoptotic activation and 

cardiomyocyte death.  To test this concept, we used an established model of hypoxia-

reoxygenation in cultured HL-1 cardiomyocytes.  In this first hypothesis, we focused on 

the acute responses to HR injury (i.e., assessed within the first 2 hours post-

reoxygenation: Figure 3-1), by immunoblotting for the cellular redistribution of DRP1, 

cytochrome c leakage into cytosol, and apoptotic activation indicated by cleavage of 

caspase 3. 

2. Materials 

HL-1 mouse cardiomyocytes were kindly provided by Dr. William Claycomb 



www.manaraa.com

23 

 

(Louisiana State University Health Science Center, New Orleans, LA).  Claycomb 

culture medium, fetal bovine serum (FBS), L-glutamine, ascorbic acid, norepinephrine, 

penicillin/streptomycin, gelatin, fibronectin, 0.05% trypsin/EDTA, HEPES, sodium 

bicarbonate, 2-deoxy-D-glucose, mannitol, KCl, sucrose CaCl2, Na-lactate, Krebs-

Henseleit (KH) buffer, KCl, mannitol, and sucrose were all purchased from Sigma-

Aldrich, Inc. (St Louis, MO).  EGTA and EDTA solutions were ordered Boston 

BioProducts, Inc. (Ashland, MA).  Sodium dodecyl sulfate (SDS), 30% polyacrylamide, 

ammonium persulfate, tetramethylethylenediamine, Tris base, nitrocellulose 

membranes, Triton X-100 and Tween 20 were from Bio-Rad Laboratories (Hercules, 

CA).  Protease inhibitor cocktail tablets were ordered from Roche Diagnostics 

Corporation (Indianapolis, IN).  Phosphatase inhibitor cocktail, Coomassie Blue Protein 

Assay Kit and bovine serum albumin (BSA) were purchased from Thermo Fisher 

Scientific Inc. (Rockford, IL).   

3. Methods 

3.1 HL-1 cardiomyocyte culture 

HL-1 cell is an immortal mouse atrial cardiomyocyte cell line capable of 

maintaining a stable, contractile phenotype throughout multiple (~20) passages (218).  

HL-1 cells were fed every day with Claycomb medium supplemented with 10% of FBS, 

L-glutamine (2 mM), norepinephrine (0.1 mM) and penicillin/streptomycin (100 U/ml: 

100 µg/ml).  The cells were grown at 37°C in an atmosphere of 5% CO2 and 95% air at 

a relative humidity of approximately 95%.  Cells were grown in gelatin/fibronectin 

precoated culture flasks and passaged only after reaching 100% of confluence. 

3.2 Hypoxia-reoxygenation 

HL-1 cells, grown to ≥ 90% confluence, were subjected to 2 hours of hypoxia  
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achieved by a buffer exchange to ischemia-mimetic solution and placement in a sealed 

hypoxic chamber along with GasPak EZ Gas Generating Sachets (GasPakTM EZ, BD 

Biosciences, San Jose, CA) (219).  Ingredients of ischemic buffer are mM, pH 6.6): 125 

NaCl, 8 KCl, 1.2 KH2PO4 1.25 MgSO4, 1.2 CaCl2, 6.25 NaHCO3, 20 HEPES, 5.5 

glucose, 20 2-deoxy-D-glucose, 5 Na-lactate (219).  Reoxygenation was achieved by a 

buffer exchange to serum-free Claycomb medium (SFCC) and incubation with 95% 

room air, 5% CO2, 95% relative humidity at 37°C.  SFCC is the same as supplemented 

Claycomb medium except that no FBS is added so the effects of FBS on cell signaling 

and cell growth are excluded.  Time-matched normoxic controls were incubated for 2 

hours with SFCC followed by exchange to new SFCC medium.   

3.3 Cell lysis and lysate fractionation 

At 5, 30 and 120 min post-reoxygenation (post-R), HL-1 cells were scraped down 

with the cell fractionation buffer (described below), and further lysed by multiple passes 

through a 26G×1/2” needle.  Ingredients of sucrose-based cell fractionation buffer are 

(mM): 10 HEPES (pH 7.5), 1 EDTA, 1 EGTA, 10 KCl, 210 mannitol, 70 sucrose, 1.5× 

protease inhibitor, 1.5× phosphatase inhibitor.  Cell lysates were first centrifuged at 

1,000g × 5 min to discard large debris and unbroken cells.  A further centrifugation at 

14,000g × 15 min was used to separate the mitochondria-enriched heavy membrane 

(HM-Mito) from cytosol (220) .  After collection of the supernatant (cytosolic proteins), 

the HM-Mito proteins were dissolved in fractionation buffer containing 1% Triton X-100. 

3.4 Gel electrophoresis and immunoblotting 

Protein concentration was determined by the Bradford assay (Bradford, 942051).  

For each endpoint, proteins (10-60 µg per lane) were resolved by SDS-PAGE and 

transferred onto a nitrocellulose membrane.  The membrane blots were blocked with 5% 
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nonfat dry milk in Tris-buffered saline (TBS) solution containing 0.1% Tween 20 (TBST) 

for 1 hr at room temperature.  Blots were subsequently incubated with primary 

antibodies diluted in 5% BSA in TBST for overnight at 4°C, and immunoreactive bands 

were visualized by incubation with horseradish peroxidase (HRP)-conjugated secondary 

antibody diluted in 5% nonfat dry milk/TBST solution for 1 hr at room temperature.  After 

development, images were scanned.  The relative expression level of proteins was 

quantified by using NIH ImageJ software and normalized to corresponding loading 

controls (beta-actin and VDAC for cytosolic and mitochondrial proteins, respectively).   

Proteins of interest were probed with the following primary antibodies: anti- DRP1 

(BD Biosciences, San Jose, CA), cytochrome c (BD Biosciences, San Jose, CA) full-

length (FL) and cleaved caspase 3 (Cell Signaling Technology, Boston, MA), and VDAC 

and beta-actin (Cell Signaling Technology, Boston, MA).  HRP-conjugated anti- rabbit 

and mouse secondary antibodies were purchased from Sigma-Aldrich, Inc. (St Louis, 

MO).  For detailed information of antibody dilution, please refer to Table 3-1. 

Table 3-1. Immunoblotting protocol 
Proteins 

 
Items 

HM-Mito Cytosol/ Whole cell lysate 

DRP1 cytochrome c VDAC DRP1 cytochrome c 
FL-

caspase 3 
cleaved- 

caspase 3 
β-actin 

Loading (µg) 35 5 5 10 10 10 50 - 60 10 

Gel concentration 
(%) 

8 12 12 8 12 12 15 8 - 12 

PAGE 100 volts/120 mins at RT 

Transfer 100 volts/90 mins at 4°C 

1st Ab dilution 
(5% BSA in 

TBST) 
1:1000 1: 8000 1:4000 1:8000 1: 1000 1: 4000 1:500 1:1000 

Time of 1st Ab  > = 15 hrs at 4°C 

Vendors of 1st 
Abs 

BD BD CST BD BD CST CST CST 

2nd Ab dilution 
(5% NFDM in 

TBST) 
1:10K 1: 20K 1:10K 1:20K 1:10K 1:10K 1:5K 1:5K 

Time of 2nd Ab 1 hr at RT 

Exposure & 
development 

Seconds to minutes: dependent on protein and quality of blotting. 

PAGE, polyacrylamide gel electrophoresis; BSA, bovine serum albumin; TBST, tris-base buffered saline 
containing 0.1% Tween 20; Ab, antibody; NFDM, nonfat dry milk; RT, room temperature; BD, BD 
Biosciences, San Jose, CA; CST, Cell Signaling Technology, Boston, MA. 
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3.5 Data and statistical analysis 

Data are presented as means ± SEM and analyzed with GraphPad Prism 

software, (GraphPad Software, Inc, La Jolla, CA).  Endpoints were compared among 

groups by one-way Analysis of Variance (ANOVA) and, if significant F-values were 

obtained, pairwise post-hoc comparisons were made using the Newman–Keuls method.  

P values < 0.05 were considered statistically significant. 

4.  Results 

4.1 HR triggers DRP1 translocation to mitochondria 

As shown in Figure 3-1 (right), 

hypoxia-reoxygenation triggered a rapid and 

significant increase in DRP1 in the 

mitochondria-enriched heavy membrane 

(HM-mito) fraction.  The increase was seen at 

5 min post-R (*P < 0.05 versus normoxic controls), and was maintained for at least 2.0 

hrs post-R (**P < 0.01 at 30 and 120 min post-R versus normoxic controls.  As expected, 

mitochondrial recruitment of DRP1 to mitochondria was accompanied by significant 

reductions in DRP1 expression within cytosol versus normoxic controls (Figure 3-2, left). 
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4.2 DRP1 movement to mitochondria is associated with cytochrome c release 

into cytosol 

Redistribution of DRP1 accumulation to mitochondria was associated with 

release of cytochrome c from 

mitochondria into cytosol. As shown 

in Figure 3-3 (left), HR caused 

significant cytochrome c leakage 

into cytosol that was seen as early 

as 5 min post-R and continued at 

30 min and 2 hr post-R (*P < 0.05 

versus normoxic controls).  This 

was accompanied by a decrease in 

expression of cytochrome c in the 

HM-Mito fraction (**P < 0.01 versus 

normoxic controls (Figure 3-2, 

right)). 

4.3 DRP1 translocation and cytochrome c release leads to apoptotic activation 

Caspase 3 is the effector caspase, located in the cytosol, that performs the 

suicidal function during apoptosis.  Accordingly, we focused on assessment of the 

expression of FL- and cleaved caspase 3 in our model.  We found that  DRP1 

translocation to mitochondria and cytochrome c release into cytosol was accompanied 

by: (i) a significant reduction in the  expression of FL-caspase 3  (*P < 0.05 at 5 and 30 

min; **P < 0.01 at  120 min post-R versus normoxic controls) and (ii) a corresponding 

increase in cleaved caspase 3 that achieved significance at 2 hrs post-R (Figure 3-4). 
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5. Summary 

In summary, HR triggered DRP1 translocation to mitochondria.  This 

translocation was associated with cytochrome c release into cytosol and the resultant 

activation of apoptosis, indicated by the reduced expression of FL-caspase 3 and 

increased production of cleaved caspase 3. 
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CHAPTER 4	

HYPOTHESIS II: PREISCHEMIC INHIBITION OF DRP1 IS CARDIOPROTECTIVE–

PHARMACOLOGIC APPROACH: MDIVI-1 

1. Rationale 

Our studies summarized in Chapter 3 demonstrate that hypoxia-reoxygenation 

promotes DRP1 translocation to mitochondria, which is associated with cytochrome c 

release and apoptotic activation, indicated by increased production of cleaved caspase 

3 in HL-1 cardiomyocytes.  However, these data do not establish a cause-effect 

relationship between DRP1 redistribution to mitochondria and cardiomyocyte injury. 

There is a small molecule antagonist, mitochondrial division inhibitor 1 (Mdivi-1), 

that specifically inhibits DRP1 self-assembly and its mitochondrial accumulation and 

mitochondrial fission during apoptosis, reportedly without off-target effects on other 

GTPase family members (210, 221).  Mdivi-1 has also been shown to significantly 

reduce cytochrome c release and attenuate the effects of apoptotic stimuli (221).  

Moreover, one previous study (185), conducted using heart and cardiomyocyte models, 

has reported that inhibition of DRP1 by Mdivi-1 prior to ischemia mitigates mitochondrial 

fission and attenuates IR injury.  However, the detailed molecular machinery of DRP1-

inhibition mediated cardioprotection is still largely unknown. 

We hypothesize that inhibition of DRP1 with Mdivi-1 prior to hypoxia will: i) 

attenuate DRP1 translocation, reduce cytochrome c release and blunt apoptosis 

activation; and ii) provide cardioprotection against HR injury.  To test our hypothesis, we 

used the same model-cultured HL-1 cardiomyocytes subjected to hypoxia-

reoxygenation – described in Chapter 3.  We focus on both the acute responses (up to 

2 hours of reoxygenation) and late responses (24 hours post-R).  The main endpoints 
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assessed acutely are the subcellular expression of DRP1, cytochrome c and caspase 3 

by immunoblotting (Figure 4-

1, top panel).  The main 

focus of the late response 

includes viability assessment 

by trypan blue staining, 

immunoblotting for DRP1 in 

the HM-Mito fraction, and 

evaluation of apoptosis, 

mitochondrial morphology 

and co-localization of DRP1 

with mitochondria by 

immunofluorescence (IF) 

microscopy (Figure 4-1, bottom panel). 

2. Materials 

Cultured HL-1 cardiomyocyte and all chemicals and reagents were the same as 

those used in Chapter 3 unless annotated below.  Mdivi-1 was ordered from Sigma-

Aldrich, Inc. (St Louis, MO) and dissolved in DMSO in a stock concentration of 50 mM.  

Trypan blue dye (0.4%) was ordered from Fisher Scientific (Pittsburg, PA).   

3. Methods 

3.1 HL-1 cardiomyocyte culture 

Refer to Chapter 3, Section 3.1. 

3.2 Cytotoxicity of Mdivi-1 

One previous study (185), conducted using HL-1 cardiomyocyte model, has 
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reported that inhibition of DRP1 by 50 µM Mdivi-1 prior to ischemia attenuated 

mitochondrial fission and reduced IR injury, while a lower concentration of Mdivi-1 (10 

µM) had no effect on either endpoint.  Additionally, in non-cardiac system, 50 µM Mdivi-

1 was reported to cause net-like mitochondrial morphology, nullify GTPase activity of 

DRP1 and attenuate cell apoptosis caused by apoptotic stimuli (221).  Therefore, based 

on these previous studies, we started our protocols focusing on DRP1 inhibition with a 

dose of 50 µM Mdivi-1.  

For assessment of toxicity, HL-1 cardiomyocytes were incubated with 50 µM 

Mdivi-1 (diluted in the media from a stock concentration of 50 mM prepared in DMSO), 

vehicle (DMSO), or media alone for 5 hours under normoxic conditions to match the 

time courses of our later, acute hypoxia-reoxygenation experiments (see Figure 4-1).  

After that, cells were lysed.  To assess whether Mdivi-1 treatment alters the expression 

of DRP1 or causes cytotoxicity, the whole cell lysates were probed (by immunoblotting) 

for the expression of DRP1, and FL- and cleaved caspase 3.   

3.3 Hypoxia-reoxygenation 

Refer to Chapter 3, Section 3.2.  Cells were incubated for 1 hour under normoxic 

conditions with 50 µM Mdivi-1 or vehicle, and then subjected to 2 hours of hypoxia.  For 

assessment of acute responses, cells were reoxygenated for up to 2 hours, and, for late 

responses, cells were reoxygenated for 24 hours.   

3.4 Cell lysis and lysate fractionation 

Refer to Chapter 3, Section 3.3. 

3.5 Cell viability assay using trypan blue staining 

At 24 hours post-R, HL-1 cells were trypsinized and resuspended in media to 

reach a final cell density of 2,000,000 to 3,000,000 per mL.  Each volume of cells was 
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mixed with equal volume of 0.4% trypan blue dye.  Trypan blue dye penetrates dead 

cells, in which the sarcolemmal membrane is compromised, but it fails to enter (is 

excluded from) viable myocytes with an intact cell membrane.  Thus, dead cells appear 

blue while viable cells are unstained.  By this mean, viable versus dead cells were 

quantified from phase contrast illumination for 20x objective on an inverted phase-

contrast light microscope (Fisher Scientific, Pittsburg, PA); a total of 250 cells counted in 

every group per independent experiment.   

3.6 Gel electrophoresis and immunoblotting 

Refer to Chapter 3, Section 3.4. 

3.7 Immunofluorescence (IF) microscopy 

3.7.1 Protocol 

HL-1 cells were grown on gelatin/fibronectin precoated coverslips for 24 hours to 

reach 40 – 50% confluence, pretreated with 50 µM Mdivi-1 or vehicle for 1 hour, and 

subjected to 2 hours of hypoxia and 24 hours of reoxygenation.  Cells were then fixed in 

4% paraformaldehyde (PFA), permeabilized and blocked in 5% goat serum/ 0.3% Triton 

X-100/ 1× PBS, and incubated overnight at 4°C in primary antibodies against:  

i. ATP synthase β subunit (ATPB; Abcam, Cambridge, MA: to identify mitochondria) 

+ cleaved caspase 3 (Cell Signaling Technology, Boston, MA), or 

ii. ATPB + DRP1 (Cell Signaling Technology, Boston, MA). 

This was followed by 90 min of incubation with goat anti- rabbit (Alexa Fluor 488-

conjugated) or mouse (Alexa Fluor 555-conjugated) secondary antibodies (targeting 

rabbit derived anti- DRP1 or cleaved caspase 3 IgGs and mouse derived anti-ATPB 

IgG , respectively: Life Technologies, Carlsbad, CA) at room temperature.  After the 

addition of one drop of antifade reagent with DAPI (Life Technologies, Carlsbad, CA) to 
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stain nuclei, the coverslips were mounted on glass slides and sealed with nail polisher.  

For a detailed summary of the staining protocol and antibody dilutions, please refer to 

Table 4-1. 

Table 4-1.  Immunofluorescence staining protocol 
 

       Proteins 
 

Items 

DRP1 ATPB cleaved caspase 3 

Fixation 4% PFA × 15 mins 
Permeabilization & block  5% Goat serum/ 0.3% Triton X-100/ 1×PBS 
1st Ab dilution (5% Goat serum/ 
0.3% Triton X-100/1×PBS) 

1:50 (Rb) 1:2000 (Ms) 1:200 (Rb) 

1st Ab incubation time 4°C overnight 
Vendors of 1st Abs CST Abcam CST 
2nd Ab dilution (5% Goat serum/ 
0.3% Triton X-100/ 1×PBS) 

1:200  1:2000 1:200 

2nd Ab incubation time 90 mins at RT 

Vendor of 2nd Abs 
Alexa Fluor 
488/anti-Rb, 

Life Technologies 

Alexa Fluor 
555/anti-Ms,  

Life Technologies 

Alexa Fluor 488/anti-
Rb,  

Life Technologies 
ATPB, ATP synthase β subunit; PFA, polyformaldehyde; PBS, phosphate buffered saline; Ab, antibody; 
Rb, rabbit; Ms: mouse; RT, room temperature; CST, Cell Signaling Technology, Boston, MA; Abcam, 
Cambridge, MA; Life Technologies, Carlsbad, CA 

 
Cells were imaged with a Leica TCS SP5 confocal system (Leica Microsystems, 

Heidelberg, Germany), using a 63× immersion oil objective and CCD camera.  In short, 

405 nm diode laser, 488 nm Argon laser and 543 nm HeNe laser were used to excite 

the fluorescence dyes.  The image format was set as 1,024 × 1,024 pixels with a scan 

speed of 400 Hz.  To further optimize the image quality, the Line Average was set as 6.  

The emitted fluorescence passing through an emission filter was detected by CCD 

camera.  For identification of proteins or structures of interest, mitochondria were 

marked red by an antibody bound to Alexa Fluor 555, DRP1 or cleaved caspase 3 were 

labeled green by antibodies bound to Alexa Fluor 488, and nuclei were stained blue with 

DAPI. To resolve multi-focal profiles of mitochondrial morphology and co-localization of 

mitochondrial and DRP1 signals, the acquisition model was selected as XYZ and Z-

Stack.  The step size was set as 0.4-0.5 µM and, usually, the complete mitochondrial 
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morphology required 3-5 sequential Z-scans.  The sequential images were 

subsequently exported as TIFF files in either merged or separate channels, with each 

file representing an individual image of a Z-slice (every 0.4-0.5 µM in step size).  The 

individual Z-slices were then reconstructed into a single Z-stack image composed of 

merged Z-slices using NIH ImageJ software Z-projection function (222).   Confocal 

images were processed for contrast and brightness adjustment and cropped to have 

uniform size for publication using Photoshop software (Adobe Systems Inc.).  

Representative images were obtained from four replicates of three independent 

experiments.  For each replicate, at least 3-4 images were taken for vehicle and Mdivi-1 

groups, respectively.  

3.7.2 Detection of apoptotic cells 

During the activation of apoptosis, full-length caspase 3 is cleaved into smaller 

fragments, e.g., P17 and P12 subunits (223-225).  Samples were probed with 

fluorescent (green) labeled anti-cleaved caspase 3 antibody that only recognizes 

fragments resulting from cleavage adjacent to Asp175 rather than the FL-caspase 3 

(226, 227), thereby allowing us to differentiate apoptotic (green) versus non-apoptotic 

cells.   

Cells were imaged with a Leica TCS SP5 confocal system (Leica Microsystems, 

Heidelberg, Germany) using the same parameters described in Section 3.7.1 with one 

exception:  no Z-scan was required for the detection of apoptotic activation.  For each 

image, we counted the number of cleaved caspase 3 positive cells (green), normalized 

to the total number of cells (marked by staining of DAPI (blue)-labeled nuclei). Results 

were obtained from four replicates of three independent experiments.  For each 

replicate, 3-4 images were taken for vehicle and Mdivi-1 groups, respectively, and at 
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least 100 cells were counted.   

3.7.3 Co-localization and hue analysis 

To assess the spatial association of DRP1 (green) with mitochondria (ATPB: red), 

two techniques were applied: 

i. Standard co-localization analysis (228, 229): confocal images were analyzed with 

NIH ImageJ software using Just Another Colocalization Plugin (JACOP) (230) 

and Pearson’s coefficient was calculated.  Co-localization analysis provides an 

index of the spatial overlap between the red channel (labeling mitochondria) and 

green channel (labeling DRP1), or in other words, assesses whether DRP1 and 

mitochondria are located at the same sites within the cell.  Pearson’s coefficient 

is an indicator of overlap and co-localization, and ranges from a maximum of 1 

(denoting complete spatial overlap between the red and green channels) to a 

minimum of -1 (denoting no overlap at all).   

ii. Hue analysis (231-233):  using merged images, in which both mitochondria (red) 

and DRP1 (green) were visualized, the numbers of red, green and yellow pixels 

were quantified using SigmaScan 5.0 (Systat Software Inc., San Jose, CA).  Red 

+ yellow pixels represent the total mitochondrial signal, and green + yellow pixels 

represent the total DRP1 signal, while yellow pixels (overlap of red and green) 

reflect the proportion of the DRP1 signal spatially associated with the 

mitochondrial signal. For a detailed description of hue analysis, please refer to 

the Appendix.  

3.8 Data and statistical analysis 

Data are presented as means ± SEM and analyzed with GraphPad Prism 

software, GraphPad Software, Inc (La Jolla, CA).  For comparison between two groups, 
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unpaired student t-test was performed.  For comparisons among three or more groups, 

one or two-way ANOVAs were performed as appropriate and pairwise post-hoc 

comparisons were made using the Newman–Keuls method if F-values reached 

significance.  P- values < 0.05 were considered statistically significant. 

4. Results 

4.1 Mdivi-1 is not toxic 

There were no differences in expression of DRP1 or FL-caspase 3 among 

groups of normoxic cells incubated for 5 hours with 50 µM Mdivi-1, DMSO vehicle or 

blank control (media only) (Figure 4-2).  In addition, there was no evidence of caspase 

3cleavage in any of the three groups, including cells treated with Mdivi-1 (data not 

shown as there was no detection of cleaved caspase 3 by immunoblotting).  Thus, 

prolonged incubation with Mdivi-1 is not toxic. 
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4.2 Acute responses 

4.2.1 Mdivi-1, given prior to hypoxia, attenuated DRP1 translocation to 

mitochondria 

As expected from the results obtained in Chapter 3, hypoxia-reoxygenation was 

associated with translocation of DRP1 to mitochondria (Figure 4-3).  Preincubation with 

Mdivi-1 for 1 hour before hypoxia attenuated this subcellular redistribution of DRP1 to 

mitochondria (*P< 0.05 versus vehicle control at 120 min post-R; Figure 4-3).  

 

4.2.2 Pretreatment with Mdivi-1 reduced cytochrome c release and cleaved 

caspase 3 production 

In the vehicle-control group, DRP1 translocation was, as expected, accompanied 

by release of  cytochrome c into cytosol (left panel, Figure 4-4) and activation of 

apoptotic machinery as indicated by production of cleaved caspase 3 (right panel, 

Figure 4-4).  In contrast, in cells pretreated with Mdivi-1, release of cytochrome c  into 

cytosol and production of cleaved caspase 3 were both attenuated when compared with 
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vehicle control:  **P< 0.01 at 120 min post-R versus vehicle control; Figure 4-4).  

 

4.3  Late responses 

4.3.1 Mdivi-1, given prior to hypoxia, increased HL-1 cardiomyocyte viability 

Two hours of hypoxia + 24 hours of reoxygenation reduced the proportion of 

viable cells (assessed by trypan blue staining) in the vehicle control group to 65±3% 

(Figure 4-5).  Administration of Mdivi-1 before hypoxia significantly increased HL-1 

cardiomyocyte viability to 79±3% (**: P< 0.01versus vehicle control; Figure 4-5).   

  

 

 

4.3.2 Prehypoxic administration of Mdivi-1 attenuated the proportion of apoptotic 

cells 

At 24 hours post-reoxygenation, the proportion of cleaved caspase 3-positive 
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cells (as detected by green immunofluorescence) in vehicle-control cells was 17±2% 

(Figure 4-6).  In contrast, in cells pretreated with Mdivi-1, the % of apoptosis-positive 

cells was reduced to 5±1% (**: P< 0.01 versus vehicle-control; Figure 4-6).   

 

4.3.3 Prehypoxic administration of Mdivi-1 decreased mitochondrial 

fragmentation and preserved normal mitochondrial morphology 

Qualitative inspection of cells stained with the mitochondrial marker ATPB 

showed that normoxic cells were, as expected, characterized by a fiber-like network of 

mitochondria (Figure 4-7: normoxia panel – left).  Hypoxia-reoxygenation caused 

fragmentation (fission) of mitochondria, as indicated by the punctate pattern of ATPB 

staining that persisted at 24 hours post-R (Figure 4-7, hypoxia-reoxygenation panel – 

left).  However, 1 hour of prehypoxic treatment with Mdivi-1 attenuated fission and in 

Figure 4-6. Addition of Mdivi-1 prior to hypoxia reduced the percentage of cleaved caspase 3-
positive cells. Left panel: Original confocal IF images of HL-1 cells subjected to 2 hours hypoxia
followed by 24 hrs reoxygenation.  Cleaved caspase 3 was detected using a green fluorescent-labeled
antibody, the mitochondrial network was labeled using an antibody targeting ATPB antibody (red) and
nuclei were counter-stained with DAPI (blue).  Representative images were taken from four replicates
(N-values = 4 replicates per group).  Right panel: quantitative analysis of cleaved caspase 3 positive HL-
1 cells, expressed as a % of the total number of cells (marked by DAPI-labeled nuclei).  Treatment with
Mdivi-1 (50 µM) prior to hypoxia was protective: % cleaved caspase 3 positive cells was significantly
reduced from 17±2% in vehicle controls to 5±1% in Mdivi-1 treated cells (**P< 0.01).  N-values = 4
replicates per group; for each replicate, 3 – 4 images were taken for vehicle and Mdivi-1 groups,
respectively; at least 100 cells were counted.
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part preserved the fiber-like normoxic mitochondrial phenotype (Figure 4-7, hypoxia-

reoxygenation panel – right). 

 

 

 

 

 
Figure 4-7.  Prehypoxic administration of Mdivi-1 preserved mitochondrial morphology.  Original 
gray-scale confocal IF images of HL-1 cells subjected to 2 hours hypoxia followed by 24 hours 
reoxygenation using ATPB (mouse-derived) antibody to label the mitochondrial network.  Representative 
images were taken from four replicates (N-values = 4 replicates per group).  Hypoxia-reoxygenation 
caused mitochondrial fission; i.e., the mitochondrial phenotype was changed from the fiber-like network 
seen under normoxic conditions (left) into punctate dots (HR panel, – left).  Mdivi-1 (50 µM) given prior to 
hypoxia-reoxygenation preserved the fiber-like normoxic mitochondrial morphology (HR panel, – right). 

4.3.4 Effect of pretreatment with Mdivi-1 on the subcellular distribution of DRP1 

was not maintained at 24 hours post-reoxygenation.  

4.3.4.1 Immunoblot evidence 

In our acute-phase experiments, we found that Mdivi-1 given prior to hypoxia 

significantly reduced DRP1 translocation to mitochondria during the first 2 hours post-R 

as assessed by immunoblotting (Figure 4-3).  However, at 24 hours post-R, DRP1 

expression in the HM-Mito fraction in cells pretreated with Mdivi-1 did not differ 

significantly versus vehicle-controls (Figure 4-8: all P values≥ 0.2). 

Figure 4-8. Prehypoxic administration of Mdivi-1 had 
no significant effect on the association of DRP1 with 
mitochondria assessed at 24 hours post-R: 
immunoblot evidence. Original immunoblots of DRP1 
(top panels), and mean values of DRP1 expression 
(±SEM: bottom panels) in HL-1 cells subjected to i) 
normoxia, or ii) 2 hours hypoxia followed by 24 hours 
reoxygenation.  Results obtained in the mitochondria-
enriched heavy membrane (HM-Mito) fraction are shown.  
N-values = 3 and 6 replicates for normoxic and hypoxia-
reoxygenation groups, respectively.  NS, no difference in 
DRP1 expression in the HM-Mito fraction in Mdivi-1 
treated groups versus vehicle controls at 24 hrs post-R 
(all P values≥ 0.2). 
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4.3.4.2 Co-localizaion analysis via ImageJ  

Results obtained by immunoblotting were supported by co-localization analysis of 

immunofluorescence images.   There were no differences in the co-localization of the 

red channel (labeling mitochondria) and green channel (labeling DRP1) at 24 hours 

post-R, as determined by comparison of the Pearson’s coefficients among cells 

subjected to HR or maintained under normoxic conditions and treated with Mdivi-1 or 

vehicle (Figure 4-9).   

 
 
4.3.4.3 Hue analysis  

Similar results were obtained by hue analysis: there was no difference in the 

association of the DRP1 signal with the mitochondrial signal among groups at 24 hours 

post-reoxygenation (Figure 4-10). 
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Figure 4-10. Prehypoxic administration of Mdivi-1 had no significant effect on the association of 
DRP1 with mitochondria assessed at 24 hours post-R: evidence from hue analysis. Quantitative 
results of hue analysis: % yellow pixels (overlap of green and red fluorescent signals) at 24 hours post-
reoxygenation with or without Mdivi-1 pretreatment.  There were no differences among groups in the 
association of the DRP1 signal with the mitochondrial signal at 24 hours post-reoxygenation, as 
determined either by: i) % DRP1 signal co-localized with mitochondrial signal (yellow) when normalized to 
total mitochondrial signal (yellow + red) (left panel), or ii) % DRP1 signal co-localized with mitochondrial 
signal (yellow) when normalized to total DRP1 signal (yellow + green) (right panel).  N-values ≥ 20 cells 
per group. 

5. Summary 

In summary, and consistent with our hypothesis, we found that pretreatment with 

Mdivi-1 was protective.  This is supported by our evidence that prehypoxic 

administration of Mdivi-1: i) significantly reduced DRP1 translocation to mitochondria, 

attenuated cytochrome c release and blunted apoptotic activation (indicated by a 

decrease in caspase 3 cleavage) at 2 hours post-R; and ii) significantly increased cell 

viability (assessed by trypan blue staining) and reduced the proportion of apoptotic cells 

(detected by IF) at 24 hours post-reoxygenation.  

We also confirmed by IF microscopy that, as expected, HR triggered 

mitochondrial fission and that prehypoxic administration of Mdivi-1 attenuated the 

fragmentation of the mitochondrial network.  These qualitative observations are 

consistent with the immunoblot data obtained acutely (within 2 hours post-R), and 

suggest that the effects of HR and Mdivi-1 pretreatment on mitochondrial morphology 
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persist at 24 hours post-reoxygenation.  In contrast, results obtained by both 

immunoblotting and IF microscopy showed that HR-induced subcellular redistribution of 

DRP1 to the mitochondria appears to be an early and acute effect.  That is: using three 

analyses, we found no difference in the co-localization of DRP1 with mitochondria at 24 

hours post-R among normoxic or hypoxia-reoxygenated cells, treated with Mdivi-1 or 

vehicle.   
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CHAPTER 5 

GENETIC APPROACH: SIRNA 

1. Rationale 

Our studies presented in Chapter 4 support the hypothesis of a cause-effect 

relationship between DRP1 translocation to mitochondrial and cardiomyocyte injury in 

the setting of HR: i.e., inhibition of DRP1 translocation by treatment with Mdivi-1 prior to 

hypoxia significantly reduced DRP1 accumulation to mitochondria, cytochrome c 

release and apoptotic activation, thus better preserving mitochondrial morphology and 

significantly increasing cardiomyocyte viability.  If this is true, then genetic down-

regulation of DRP1 expression before HR should achieve similar cardioprotective 

effects as inhibition of DRP1 translocation with Mdivi-1.  The results of genetic approach, 

that is to silence DRP1 expression before hypoxia will further confirm the studies of 

inhibiting by pharmacologic approach.  To test this concept and confirm the outcome 

obtained with pharmacologic inhibition, we knocked down the expression of DRP1 using 

specific siRNA and quantified viable versus dead cells in DRP1 siRNA transfected 

cardiomyocytes versus controls (Figure 5-1).   

 
Figure 5-1. Scheme of experiments in Chapter 5. 

2. Material 

Cultured HL-1 cardiomyocytes, all chemicals, reagents and antibodies used in 

this Chapter are the same as those used in Chapter 3, if not annotated separately.  



www.manaraa.com

45 

 

Mouse DRP1 siRNA designed to knockdown the expression of DRP1, the scrambled 

control siRNA, the DharmaFECT Transfection Reagent 1 and 5× siRNA buffers were all 

ordered from Thermo Fisher Scientific, Inc. (Pittsburg, PA). 

3. Method  

3.1 Knockdown the expression of DRP1 by specific siRNA 

One previous study demonstrated that DRP1 siRNA can significantly reduce DRP1 

mRNA expression in neonatal mouse cardiomyocytes (217). In our protocols, HL-1 cells 

were transfected with DRP1 siRNA for 48 hours per the manufacturer’s protocol as 

detailed below: 

i. HL-1 cardiomyocytes were grown on gelatin/fibronectin pre-coated 6-well plate to 

reach 30-40% confluence before transfection; 

ii. DRP1 siRNA or scrambled siRNA were dissolved in 1× siRNA buffer to a stock 

concentration of 2 mM; 

iii. the transfection construct was prepared as DRP1 siRNA or scrambled siRNA at 

50 nM and DharmaFECT Transfection Reagent 1 at 1.25 µL/mL in antibiotic-free  

Claycomb medium; 

iv. cells were rinsed once with antibiotic-free Claycomb medium and each well was 

treated with either DRP1 siRNA transfection construct (final volume of 2 mL), 

scrambled siRNA construct (final volume of 2 mL) or media alone (blank: final 

volume of 2 mL); 

v. after 24 hours of incubation, the transfection construct (or media alone) was 

replaced by fully supplemented Claycomb medium; and  

vi. after culturing the cells for another 24 hours (that is up to 48 hours post-

transfection), cells were lysed with RIPA buffer supplemented with 1.5× protease 
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inhibitor and 1.5× phosphatase inhibitor. After obtaining the whole cell lysates, 10 

µg of protein was loaded and immunoblotting (same methods described in 

Chapter 3, Section 3.4) was used to detect the expression of DRP1 in the three 

groups.  

3.2 Cell viability assay after siRNA transfection 

In separate experiments, HL-1 cardiomyocytes, grown on 60 mm culture dishes, 

were transfected with siRNA using the same method described above except that the 

final volume of transfection construct was 4.0 ml.  At 48 hours post-transfection, cells 

were subjected to 2 hours of hypoxia (Refer to Chapter 3, Section 3.2).  At 24 hours 

post-reoxygenation, viable versus dead cells were distinguished by trypan blue staining, 

counted, and % viability was calculated (refer to Chapter 4, Section 3.5). 

3.3 Data and statistical analysis 

Data are presented as means ± SEM and analyzed with GraphPad Prism 

software, GraphPad Software, Inc. (La Jolla, CA).  One or two-way ANOVAs were 

performed as appropriate and pairwise post-hoc comparisons were made using the 

Newman–Keuls method if F-values reached significance.  P- values < 0.05 were 

considered statistically significant. 

4.   Results 

4.1 DRP1 siRNA reduced DRP1 expression by ~60% 

As expected, there was no difference in DRP1 expression at 48 hours post-

transfection in the scrambled siRNA group versus blank controls (Figure 5-2).  In 

contrast, in cells transfected with DRP1 siRNA, the expression of DRP1 was decreased 

by ~ 60% when compared with either scrambled siRNA or media alone (blank):  

**P<0.01 in DRP1 siRNA versus blank control and scrambled siRNA groups, 



www.manaraa.com

47 

 

respectively; Figure 5-2). 

Figure 5-2. DRP1 siRNA significantly 
reduced DRP1 expression. Original 
immunoblots of DRP1 (top panels), and 
mean values of DRP1 expression (±SEM: 
bottom panels) in HL-1 cells transfected with 
either DRP1 siRNA or scrambled siRNA for 
48 hours or incubated in media alone (blank).  
Data were obtained using whole cell lysates.  
N-values = 3 replicates per group.  **P< 
0.01 versus blank control and scrambled 
siRNA, respectively. 
 

 

 

 

 

4.2 Downregulation of DRP1 expression increased HL-1 cardiomyocyte viability 

In cells maintained under normoxic conditions, the concentration of transfection 

reagent used in our protocol had a small but significant toxic effect.  HL-1 cell viability 

was reduced from approximately 96±2% in normoxic blank controls to 91±1% and 90±3% 

in normoxic cells that were treated with scrambled or DRP1 siRNA, respectively (Figure 

5-3).  

Figure 5-3. DRP1 silencing with siRNA 
increased HL-1 cardiomyocyte viability. 
Mean values of viability (% ± SEM) in HL-1 
cells subjected to: i) normoxia and ii) 2 hours 
hypoxia followed by 24 hours reoxygenation.  
Data obtained in normoxic cells showed that 
incubation in transfection reagent had a small 
but significant toxic effect (** P<0.01 and 
**P<0.01).  Nonetheless, knocking down 
DRP1 expression prior to hypoxia was 
protective: % cell viability was 76±1% versus 
63±2% in blank and 60±1% in scramble 
controls, respectively (**: P< 0.01).  N-values 
= 4 replicates per group; for each replicate, at 
least 250 cells were counted for every group. 
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Two hours of hypoxia + 24 hours of reoxygenation reduced the proportion of 

viable cells in the blank control and scrambled siRNA groups to 63±2% and 60±1%, 

respectively (Figure 5-3).  Knocking down DRP1 expression before hypoxia significantly 

increased HL-1 cardiomyocyte viability to 76±1% (**: P< 0.01versus blank control and 

scrambled siRNA, respectively; Figure 5-3).   

5. Summary 

In summary, and consistent with our hypothesis, we found that knocking down 

DRP1 expression was protective.  This is supported by our evidence that transfection 

with DRP1 siRNA: i) significantly reduced DRP1 expression; and ii) significantly 

increased cell viability (assessed by trypan blue staining) at 24 hours post-

reoxygenation. The results of the genetic approach, that is to silence DRP1 expression 

before hypoxia, further confirms the data obtained by pharmacologic inhibition and 

corroborate the cause-effect relationship between DRP1 redistribution and 

cardiomyocyte injury in the context of HR.  
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CHAPTER 6 

HYPOTHESIS IV:  INHIBITION OF DRP1 AT REOXYGENATION─IS 

CARDIOPROTECTION MAINTAINED? 

1. Rationale 

To date, our studies summarized in Chapters 3-5 established that DRP1 

translocation to mitochondria plays a cause-effect role in cardiomyocyte injury in the 

context of hypoxia-reoxygenation.  This is supported by  evidence that: i) HR triggered 

DRP1 redistribution to mitochondria, which was associated with cytochrome c release 

into cytosol, apoptotic activation and cardiomyocyte death, in addition to mitochondrial 

fragmentation; and ii) prehypoxic inhibition of DRP1, by either Mdivi-1 or downregulating 

its expression by siRNA, was cardioprotective (attenuated DRP1 accumulation to 

mitochondria; reduced cytochrome c leakage; decreased apoptotic activation indicated 

by decreased generation of cleaved caspase 3; increased cardiomyocyte viability and 

better preserved mitochondria morphology).  However, in all our experiments, inhibition 

of DRP1 was implemented before the hypoxic insult; no protocols have been done to 

explore the cardioprotective effects in a more clinically relevant way; that is to apply the 

interventions at reoxygenation phase. 

The purpose of Chapter 6 is to establish if inhibition of DRP1 at reoxygenation 

can still offer cardioprotection.  Accordingly, we hypothesized that inhibition of DRP1 at 

reoxygenation will also be protective – but possibly less robust than pretreatment.  To 

test this concept, Mdivi-1 (50 µM) was given at reoxygenation instead of before hypoxia.  

The major endpoint for the acute responses (up to 2 hours post-reoxygenation) was 

immunoblotting for the expression of cleaved caspase 3.  The major endpoints for the 

late responses (at 24 hours post-R) included trypan blue staining for assessment of  
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Figure 6-1. Experimental protocol for Chapter 6: acute and late responses in HR injury.  
 

viability, and IF microscopy for detection of apoptotic cells and mitochondrial 

morphology.  In addition, to exclude the possibility that cellular penetration of Mdivi-1 

may be increased in posthypoxic cardiomyocytes because of increased membrane 

permeability, we did supplemental viability experiments using: i) lower doses of Mdivi-1 

(5 and 10 µM), or ii) a shorter treatment duration (Mdivi-1 maintained in the media for 1 
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or 3 hours, rather than 24 hours, post-reoxygenation) (Figure 6-1).  Finally, in an 

additional group of cells treated with Mdivi-1, 50 µM, for the first hour of reoxygenation, 

cleaved caspase 3 production was assessed by immunoblotting at 2 hours post-R and 

compared with Mdivi-1 pretreatment. 

2.  Materials 

Cultured HL-1 cardiomyocytes, all chemicals and reagents and antibodies are 

the same as those used in previous Chapters if not annotated specifically. 

3. Methods 

3.1 HL-1 cardiomyocyte culture and hypoxia-reoxygenation 

Refer to Chapter 3, Sections 3.1 and 3.2. 

3.2 Cell lysis and fractionation 

At 2 hours post-R, HL-1 cardiomyocytes were mechanically lysed and the lysates 

were further separated into cytosolic and HM-Mito fractions.  For the detailed protocol 

used for cell lysis, refer to Chapter 3, Section 3.3. 

3.3 Gel electrophoresis and immunoblotting 

A total of 50-60 µg protein was loaded to each well and probed for expression of   

Cleaved caspase 3.  For a detailed description of the immunoblotting protocol, refer to 

Chapter 3, Section 3.4 and Table 3-1. 

3.4 Viability assay by trypan blue staining when HL-1 cardiomyocytes were 

reoxygenated with 50 µM Mdivi-1 for 24 hrs 

HL-1 cardiomyocytes were reoxygenated with SFCC containing 50 µM Mdivi-1 

and cell viability was assessed with trypan blue staining at 24 hours post-R.  Two other 

groups were included: one received 1 hour of incubation of 50 µM Mdivi-1 prior to 

hypoxia, and the second served as controls (received DMSO vehicle only).  For a 
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detailed description of the trypan blue staining protocol, refer to Chapter 4, Section 3.5. 

3.5 IF microscopy 

Refer to Chapter 4, Section 3.7.  Briefly, at 24 hours post-R, cells were fixed and 

permeabilized, followed by incubation overnight at 4°C in primary antibodies against:  i) 

ATPB + cleaved caspase 3 or ii) ATPB.  Cells were imaged with a Leica TCS SP5 

confocal system (Leica Microsystems, Heidelberg, Germany), using a 63× immersion oil 

objective and CCD camera.  For identification of proteins or structures of interest, 

mitochondria were marked red by an antibody bound to Alexa Fluor 555, cleaved 

caspase 3 were labeled green by an antibody bound to Alexa Fluor 488, and nuclei 

were stained blue with DAPI. 

3.5.1 Detection of apoptotic cells by IF microscopy 

Refer to Chapter 4, Section 3.7.2.  Briefly, for each image, we counted the 

number of cleaved caspase 3 positive cells (green), normalized to the total number of 

cells (marked by staining of DAPI (blue)-labeled nuclei). Results were obtained from 

four replicates of three independent experiments.  For each replicate, 3-4 images were 

taken for vehicle and Mdivi-1 groups, respectively, and at least 100 cells were counted. 

3.5.2 Mitochondrial morphology with or without posthypoxic Mdivi-1 treatment 

Refer to Chapter 4, Section 3.7.1.  Briefly, to resolve multi-focal profiles of 

mitochondrial morphology, the acquisition model was selected as XYZ and Z-Stack, 

with a step size of 0.4-0.5 µM.  The sequential images were subsequently exported as 

TIFF files in either merged or separate channels, with each file representing an 

individual image of a Z-slice (every 0.4-0.5 µM in step size).  The individual Z-slices 

were then reconstructed into a single Z-stack image composed of merged Z-slices using 

NIH ImageJ software Z-projection function (222).   Confocal images were processed for 
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contrast and brightness adjustment and cropped to have uniform size for publication 

using Photoshop software (Adobe Systems Inc.).  Representative images were obtained 

from four replicates of three independent experiments.  For each replicate, at least 3-4 

images were taken for vehicle and Mdivi-1 groups, respectively. 

3.6 Viability assay when HL-1 cardiomyocytes were reoxygenated with 5 and 10 

µM Mdivi-1 for 24 hours or with 50 µM Mdivi-1 for 1 and 3 hours  

To address the possibility that the efficacy of Mdivi-1 treatment, given at 

reoxygenation versus pretreatment, may differ simply because of differences in 

membrane permeability and drug penetration, we used two different strategies.  Firstly, 

we reoxygenated HL-1 cardiomyocytes with lower doses of Mdivi-1 (5 and 10 µM) for 24 

hours.  Secondly, we washed away the SFCC containing 50 µM Mdivi-1 at 1 and 3 

hours post-R, and the cells were continuously be reoxygenated with SFCC without 

Mdivi-1 until to 24 hrs post-R.  Viable versus dead cells for both alternative strategies 

were assayed and quantified by trypan blue staining. 

3.7 Data and statistical analysis 

Data are presented as means ± SEM and analyzed with GraphPad Prism 

software, (GraphPad Software Inc., La Jolla, CA).  For comparison between two groups, 

unpaired student t-test was performed.  For comparisons among three or more groups, 

one or two-way ANOVAs were performed as appropriate and pairwise post-hoc 

comparisons were made using the Newman–Keuls method if F-values reached 

significance.  P- values < 0.05 were considered statistically significant. 

4. Results 

4.1 Mdivi-1 given at reoxygenation reduced the production of cleaved caspase 3 

As expected from the outcome of Chapter 4, prehypoxic administration of 50 µM 
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Mdivi-1 (Mdivi-1-PRE), significantly attenuated caspase 3 cleavage (Figure 6-2).   The 

same dose of Mdivi-1, when administered at reoxygenation (Mdivi-1-POST), had a 

comparable effect and significantly reduced the production of cleaved caspase 3:  **P< 

0.01 in both Mdivi-1-PRE and Mdivi-1-POST groups versus vehicle controls (Figure 6-2). 

Figure 6-2. Mdivi-1 given at 
reoxygenation attenuated 
caspase 3 cleavage. Original 
immunoblots of cleaved caspase 3 
(top panel), and mean values of 
cleaved caspase 3 (±SEM: bottom 
panel) in HL-1 cells subjected to i) 
normoxia, or ii) 2 hours hypoxia 
followed by 2 hours of reoxygenation.  
Mdivi-1-PRE = pretreatment with 50 
µM Mdivi-1; Mdivi-1-POST = 
treatment with 50 µM Mdivi-1 at 
reoxygenation.  Results obtained in 
the cytosolic fraction are shown.  N-
values = 4 replicates per group for 
the results of cleaved caspase 3 
immunoblots.  **P< 0.01 versus 
vehicle controls at 2 hours post-R. 
 

 

4.2 Mdivi-1 given at reoxygenation exacerbated cardiomyocyte death 

Two hours of hypoxia + 24 hours of reoxygenation reduced the proportion of 

viable cells (assessed by trypan blue staining) in the vehicle control group to 66±2% 

(Figure 6-3).  As expected from our results in Chapter 4, administration of 50 µM Mdivi-1 

before hypoxia significantly increased HL-1 cardiomyocyte viability to 78±3% (*: P< 0.05 

versus vehicle control; Figure 6-3).  In contrast, the same dose of Mdivi-1 given at 

reoxygenation exacerbated cell death, with viability reduced to 35±6% (**: P< 0.01 

versus both vehicle control and Mdivi-1-PRE, respectively; Figure 6-3). 
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Figure 6-3. Mdivi-1 given at reoxygenation 
exacerbated cell death. Mean values of viability (%, ± 
SEM) in HL-1 cells subjected to 2 hours hypoxia followed 
by 24 hours reoxygenation or a time-matched normoxic 
period.  Treatment with 50 µM Mdivi-1 before hypoxia 
was protective: % cell viability was 78±3% versus 66±2% 
in vehicle controls (*: P< 0.05).  Mdivi-1 (50 µM) given at 
reoxygenation for 24 hours exacerbated cell death and 
the viability decreased to 35±6% (**: P< 0.01 versus 
vehicle control and Mdivi-1-PRE.  N-values ≥ 6 replicates 
per group; for each replicate, at least 250 cells were 
counted for every group. 

 

4.3 Mdivi-1 given at reoxygenation reduced the proportion of apoptotic 

cardiomyocytes as detected by IF 

At  24  hours  post-reoxygenation,  the proportion  of cleaved  caspase  3-positive 

Figure 6-4. Mdivi-1 given at reoxygenation 
decreased the percentage of cleaved caspase 
3-positive cells. Left panels: Original confocal IF 
images of HL-1 cells subjected to 2 hours hypoxia 
followed by 24 hours of reoxygenation.  Cleaved 
caspase 3 was detected using a green 
fluorescence-labeled antibody, the mitochondrial 
network was labeled using an antibody targeting 
ATPB antibody (red) and nuclei were counter-
stained with DAPI (blue).  Representative images 
were taken from four replicates (N-values = 4 
replicates per group).  Right panel: quantitative 
analysis of cleaved caspase 3 positive HL-1 cells, 
expressed as a % of the total number of cells 
(marked by DAPI-labeled nuclei).  Treatment with 
Mdivi-1 (50 µM) at reoxygenation did not increase 
apoptosis: % cleaved caspase 3 positive cells was 

significantly reduced from 20±2% in vehicle controls to 10±1% in Mdivi-1 treated cells (**P<0.01).  N-
values = 4 replicates per group; for each replicate, 3 – 4 images were taken for vehicle and Mdivi-1 
groups, respectively; at least 100 cells were counted.  
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cells (as detected by green immunofluorescence) in vehicle-control cells was 20±2% 

(Figure 6-4).  In contrast, in cells treated with 50 µM Mdivi-1 at reoxygenation, the % of 

apoptosis-positive cells was reduced to 10±1% (**: P< 0.01 versus vehicle-control; 

Figure 6-4).  

4.4 Mdivi-1 given at reoxygenation did not preserve mitochondrial morphology 

Qualitative inspection of cells stained with the mitochondrial marker ATPB 

showed that normoxic cells were, as expected, characterized by a fiber-like network of 

mitochondria (Figure 6-5: normoxia panel – left).  Hypoxia-reoxygenation caused 

fragmentation (fission) of mitochondria, as indicated by the punctate pattern of ATPB 

staining that persisted at 24 hours post-R (Figure 6-5, hypoxia-reoxygenation panel – 

left).  Mdivi-1 (50 µM) administered at reoxygenation did not attenuate fission and 

preserve the normal fiber-like mitochondrial phenotype but, rather, appeared to worsen 

mitochondrial disruption (Figure 6-5, hypoxia-reoxygenation panel – right). 

Figure 6-5. Mdivi-1 given at reoxygenation did not preserve mitochondrial structure. Original gray-
scale confocal IF images of HL-1 cells subjected to 2 hours hypoxia followed by 24 hours reoxygenation 
using ATPB (mouse-derived) antibody to label the mitochondrial network.  Representative images were 
taken from four replicates (N-values = 4 replicates per group). Hypoxia-reoxygenation caused 
mitochondrial fission; i.e., the mitochondrial phenotype was changed from the fiber-like network seen 
under normoxic conditions (left) into punctate dots (HR panel, – left).  Mdivi-1 (50 µM) given at 
reoxygenation for 24 hours appeared to worsen mitochondrial phenotype (HR panel, – right). 

4.5 Lower dose or shorter time of posthypoxic Mdivi-1 treatment did not offer 

cardioprotection 

Two hours of hypoxia + 24 hours of reoxygenation reduced the proportion of 
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viable cells (assessed by trypan blue staining) in the vehicle control group to 63±2% 

(Figure 6-6).   Lower  doses  of  Mdivi-1 at  reoxygenation, (5  and  10 µM), and  shorter 

Figure 6-6. Lower dose or shorter time of 
posthypoxic Mdivi-1 treatment was not protective. 
Mean values of viability (%, ± SEM) in HL-1 cells 
subjected to 2 hours hypoxia followed by 24 hours 
reoxygenation or a time-matched normoxic period.  
Administration of Mdivi-1 at reoxygenation with lower 
doses (5 and 10 µM), or shorter (1 and 3 hour) 
incubation with 50 µM Mdivi-1, did not offer 
cardioprotection: NS, not significantly different versus 
vehicle control.  50 µM Mdivi-1 given at reoxygenation 
for 24 hours exacerbated cell death and the viability 
decreased to 36±2% (**: P< 0.01 versus all HR groups; 
##: P< 0.01 versus normoxic controls).  N-values ≥ 4 
replicates per group; for each replicate, at least 250 cells 
were counted for every group. 

 

 

incubation with 50 µM Mdivi-1 (1 and 3 hours) had no effect on viability: NS, not 

significantly different versus  vehicle control (Figure 6-6).  However, we re-confirmed 

that 50 µM Mdivi-1 given at reoxygenation and maintained in the media for 24 hours 

worsened cell death and decreased viability to 36±2% (**: P< 0.01 versus all other HR 

groups; Figure 6-6). 

4.6 Shortened (1 hour) posthypoxic treatment with 50 µM Mdivi-1 attenuated 

caspase 3 cleavage 

We reconfirmed that prehypoxic administration of 50 µM Mdivi-1 (Mdivi-1-PRE) 

significantly attenuated the generation of cleaved caspase 3 (Figure 6-7).  The same 

dose of Mdivi-1, given at reoxygenation (Mdivi-1-POST) and maintained in the media for 

1 hour, was protective, and indeed was significantly more effective in reducing caspase 

 3 cleavage than Mdivi-1-PRE:  **P< 0.01 in both Mdivi-1-PRE and Mdivi-1-POST 

groups versus vehicle controls;  *P< 0.05 versus Mdivi-1-PRE (Figure 6-7).  
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Figure 6-7. Shortened (1 hour) 
posthypoxic treatment with 50 
µM Mdivi-1 attenuated 
caspase 3 cleavage. Original 
immunoblots of cleaved caspase 
3 (top panel), and mean values 
of cleaved caspase 3 (±SEM: 
bottom panel) in HL-1 cells 
subjected to i) normoxia, or ii) 2 
hours hypoxia followed by 2 
hours of reoxygenation.  Cells 
received 1 hour incubation of 50 
µM Mdivi-1 before hypoxia or 
were reoxygenated with 50 µM 
Mdivi-1 for 1 hour, followed by 
incubation with SFCC for 
another hour.  At 2 hours post-R, 
cells were lysed and lysates 
were separated into cytosolic 
and HM-Mito fractions. Results 
obtained in the cytosolic fraction 

are shown.  N-values = 4 replicates per group.  **P< 0.01 versus vehicle controls at 2 hours post-R.  
Mdivi-1-POST further decreased cleaved caspase 3 production: *P< 0.05 versus Mdivi-1-PRE.  
 

5.  Summary 

In this Chapter, we tested whether cardioprotection with Mdivi-1 was maintained 

when treatment was begun at reoxygenation.  With 50 µM Mdivi-1 given at 

reoxygenation, the immunoblot data (up to 2 hours post-R) showed a significant 

decrease in caspase 3 cleavage, which was comparable to that seen with prehypoxic 

Mdivi-1 treatment. This finding (attenuation of apoptosis with 50 µM Mdivi-1 at 

reoxygenation) persisted at 24 hours post-R, as detected by IF staining.   However, with 

50 µM Mdivi-1 given at reoxygenation for 24 hours, HL-1 cell viability assessed by 

trypan blue staining was significantly decreased (rather than increased, as seen with 

prehypoxic Mdivi-1) versus controls.  

The exacerbated cell death by trypan blue staining seen in this group may be a 

toxic effect of prolonged (24 hour) exposure to 50 µM of the inhibitor.  This is supported 

by the finding that lower doses of Mdivi-1 maintained for 24 hours post-reoxygenation, 

or shorter, 1 or 3 hour exposures to Mdivi-1, did not increase cell death. Importantly, 
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however, none of the doses of Mdivi-1, given at reoxygenation, were protective.  In 

addition, we consistently observed an apparent and unexplained dissociation between 

apoptotic cell death (by caspase 3 cleavage) versus total cell death (by trypan blue 

staining) for all groups treated with Mdivi-1 at reoxygenation.  
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CHAPTER 7 

HYPOTHESIS V: EXACERBATION OF CELL DEATH WITH MDIVI-1 GIVEN AT 

REOXYGENATION – ROLE OF NECROPTOSIS? 

1. Rationale 

In Chapter 6, our studies found that posthypoxic treatment with 50 µM Mdivi-1 

attenuated apoptosis as detected by immunoblotting and IF microscopy, but 

exacerbated total cell death as quantified by trypan blue staining.  That is, there 

appears to be a dissociation between apoptotic cell death versus necrotic cell death.  As 

discussed in Chapter 1, simultaneous inhibition of the apoptotic machinery and 

activation of the death receptor pathway can initiate the phenomenon of ‘necroptosis’, or 

programmed necrosis (Figure 1-3) (234, 235), and may provide a possible explanation 

for the paradox.   

The key regulators of necroptosis are serine-threonine RIP kinases, including 

RIP1 and RIP3 (234, 235).  There is a small molecule antagonist, Necrostain-1 (82, 

236), that inhibits RIP1 kinase activity, its autophosphorylation and its interaction with 

RIP3, all of which are critical for programmed necroptosis (75).  In non-cardiac system, 

Necrostatin-1 significantly increased ex vivo cell viability against necrotic (237) or 

necroptic stimuli (i.e., induction of death + pan-inhibitors of caspases (82), and 

attenuated in vivo infarct size in brain ischemic injury, retinal photoreceptor necrosis and 

renal ischemia-reperfusion injury (238-240).  Recent studies suggest that necroptosis 

may also contribute to myocardial ischemia-reperfusion injury (83, 241-243).  In cardiac 

models, addition of Necrostain-1 i) attenuated  cardiomyocyte death caused by 

oxidative-stress (242, 244); ii) reduced infarct size in isolated perfused hearts subjected 

to ischemia-reperfusion (242, 245); and iii) limited infarct size in in vivo ischemia-
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reperfusion studies (83, 242, 243). 

Accordingly, we hypothesized that the increased total cell death, despite 

attenuation of apoptosis, seen with 50 µM Mdivi-1 given at reoxygenation, may be a 

consequence of necroptosis.  If so, we propose that Necrostatin-1, co-administered with 

Mdivi-1 at reoxygenation, will reverse the exacerbation in cell death following Mdivi-1-

POST treatment.  To test our hypothesis (Figure 7-1), we used the same model ─ 

cultured HL-1 cardiomyocytes subjected to hypoxia-reoxygenation – described in 

Chapter 3.  At the beginning of reoxygenation, cells were given either Mdivi-1 alone, 

Mdivi-1 + Necrostatin-1, or vehicle (DMSO).  Viability was assessed by trypan blue 

staining at 24 hours post-R. 

 
Figure 7-1. Scheme of experimental protocols in Chapter 7. 

2. Materials 

The model (cultured HL-1 cardiomyocytes) and all chemicals and reagents are 

the same as those used in Chapters 3 and 4 if not annotated specifically.  Necrostatin-1 

was ordered from Sigma-Aldrich, Inc. (St Louis, MO) and dissolved in DMSO in a stock 

concentration of 50 mM. 

3. Methods 

3.1 HL-1 cardiomyocyte culture 

Refer to Chapter 3, Section 3.1. 
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3.2 Hypoxia-reoxygenation 

Refer to Chapter 3, Section 3.2.  There is published data, based on in vitro 

kinase activity assays, that Necrostatin-1 at concentrations of 30 – 100 µM effectively 

inhibits RIP1 kinase activity (82).  Likewise, both 30 and 100 µM significantly attenuated 

C2C12 and H9C2 cell death by tert-Butyl hydroperoxide treatment (242).  Therefore, 

based on these previous studies, we chose to use a dose of 50 µM Necrostatin-1. 

Following 2.0 hours of hypoxia, HL-1 cardiomyocytes were reoxygenated with SFCC 

containing DMSO vehicle, 50 µM Mdivi-1 or 50 µM Mdivi-1 + 50 µM Necrostatin-1. 

3.3 Cell viability assay by trypan blue staining 

Refer to Chapter 4, Section 3.5.  Briefly, at 24 hours post-R, HL-1 cells were 

trypsinized and resuspended.  Viable versus dead cells were assessed and quantified 

by trypan blue staining. 

3.4 Data and statistical analysis 

Data are presented as means ± SEM and analyzed with GraphPad Prism 

software, GraphPad Software Inc. (La Jolla, CA).  Endpoints were compared among 

groups by one or two-way ANOVAs as appropriate and pairwise post-hoc comparisons 

were made using the Newman–Keuls method if F-values reached significance.  P-

values < 0.05 were considered statistically significant. 

4. Results 

4.1 Necrostatin-1 (50 µM), an inhibitor of RIP1, partially rescued the exacerbated 

necrosis induced by posthypoxic Mdivi-1 (50 µM) treatment 

Two hours of hypoxia + 24 hours of reoxygenation reduced the proportion of 

viable cells in the vehicle control group to 67±2% (Figure 7-2).  As expected from 

Chapter 6, administration of 50 µM Mdivi-1 at reoxygenation and maintained in the 
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media for 24 hours, significantly decreased cell viability to 37±5% (**: P< 0.01 versus 

vehicle control; Figure 7-2).  Necrostatin-1 co-administered with Mdivi-1 at 

reoxygenation significantly increased viability to 50±3% (**: P< 0.01 versus Mdivi-1-

POST; Figure 7-2); however, viability with Necrostatin-1 + Mdivi-1-POST remained 

significantly lower than vehicle control (**: P< 0.01; Figure 7-2). 

Figure 7-2. Necrostatin-1 (50 µM), an inhibitor of RIP1 partially rescued necrotic phenotype 
induced by posthypoxic Mdivi-1 (50 µM) treatment. Mean values of viability (%, ± SEM) in HL-1 cells 
subjected to 2 hours hypoxia followed by 24 hours of reoxygenation or a time-matched normoxic period.  
Treatment with Mdivi-1 at reoxygenation for 24 hours exacerbated cell death: % cell viability was 37±5% 
versus 67±2% in vehicle controls (**: P< 0.01).  Necrostatin-1, co-administered with Mdivi-1 at 
reoxygenation significantly increased viability to 50±3% (**: P< 0.01 versus Mdivi-1-POST).  However, 
this value remained significantly lower than vehicle control (**: P< 0.01).  N-values ≥ 4 replicates per 
group in normoxic controls, and ≥ 5 replicates per group in HR groups; for each replicate, at least 250 
cells were counted for every group. 
 

4.2 Necrostain-1 (50 µM) alone had no effect on viability 

In final, supplementary experiments, we assessed the effect of Necrostatin-1 

alone, given under normoxic conditions or at reoxygenation, on total cell death 

assessed by trypan blue staining (Figure 7-3). The inhibitor had no effect on normoxic 

cells: viability was maintained at >90%, similar to values seen our normoxic cultures. 

Two hours of hypoxia + 24 hours of reoxygenation reduced the proportion of viable cells 

in the vehicle control group to 58±4% (Figure 7-3).  Administration of Necrostatin-1 at 

reoxygenation had no effect on cell viability (NS, not significantly different from vehicle 
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controls, Figure 7-3). 

Figure 7-3. Necrostain-1 given at 
reoxygenation alone did not change viability.  
Mean values of viability (%, ± SEM) in HL-1 
cells subjected to 2 hours hypoxia followed by 
24 hours reoxygenation or a time-matched 
normoxic period.  Hypoxia-reoxygenation 
reduced % cell viability 58±4%in vehicle 
controls.  Necrostatin-1, administered alone at 
reoxygenation for 24 hours did not significantly 
change cell viability (61±4%; NS, not 
significantly differ from vehicle control).  N-
values ≥ 5 replicates per group; for each 
replicate, at least 250 cells were counted for 
every group. 
 

 

 

 

5. Summary 

Our studies this chapter show that Necrostatin-1, an inhibitor of RIP1, partially 

reversed the increase in HL-1 cardiomyocyte death seen with posthypoxic Mdivi-1 

treatment (50 µM initiated at reoxygenation and maintained in the media for 24 hours).  

These data are consistent with the hypothesis that programmed necrosis may 

participate in the exacerbated cell death induced by Mdivi-1-POST.  However,   

Necrostatin-1, when administered alone at reoxygenation, did not significantly change 

cell viability.  This suggests that, in contrast to previous reports using other models, 

necroptosis may not be a significant cause of cell death in HL-1 cells subjected to 

hypoxia-reoxygenation.   
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CHAPTER 8 

DISCUSSION 

1. Summary of Results 

In this project, I have tested three hypotheses and made three major 

observations.  In the HL-1 cell model: 

i. Hypoxia-reoxygenation triggers the subcellular redistribution of DRP1 (the master 

regulator of mitochondrial fission) from the cytosol to mitochondria and plays a 

mechanistic role in hypoxia-reoxygenation-induced cytochrome c release and cell 

apoptosis. 

ii. Inhibition of DRP1 translocation prior to hypoxia is cytoprotective.  This finding 

was demonstrated by both a pharmacologic approach (Mdivi-1) and genetic 

approach (siRNA). 

iii. In contrast to our final hypothesis, inhibition of DRP1 in a time-frame that is 

relevant as a therapeutic strategy (i.e., begun at reoxygenation) is not protective.  

Rather, we observed a paradox. Mdivi-1, given at reoxygenation, attenuated 

apoptosis, but did not reduce total cell death and, in some cases (prolonged 

exposure at a dose of 50 µM) exacerbated cell death.  This worsening of cell 

death was in part rescued by co-administration of Necrostatin-1, suggesting that 

necroptosis (programmed necrosis) may play a role.  

2. Mitochondrial Fission and Cardiomyocyte Viability: Current Knowledge and 

New Contributions 

Mitochondria are essential organelles of eukaryotic cells.  Dysfunctional 

mitochondria not only disrupt bioenergetics but contribute to the pathogenesis of human 

diseases (191, 246).  Mitochondrial fusion and fission, collectively named as 
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mitochondrial dynamics, are one of the core mechanisms responsible for maintaining 

mitochondrial health and functional integrity (191, 246).   

The currently available knowledge of mitochondrial dynamics and its significance 

in physiology and pathophysiology is mainly derived from research from lower 

eukaryotic systems such as yeast (191, 246), and from non-cardiac models(191, 206, 

246-248) including neurodegenerative disorders, e.g., hereditary Parkinson’s disease 

(206, 247, 248).  There is general agreement that mitochondrial fusion favors cell 

survival by allowing lipid membrane and context exchange between damaged and 

healthy mitochondria, while fission has been associated with cell death, mitochondrial 

damage, and initiation of apoptosis (206, 247, 248).   

As discussed Chapter 1, mitochondria are recognized as the epicenter in 

mediating myocardial ischemia-reperfusion injury; as a result, mitochondria have 

emerged as a cellular target in efforts to mitigate IR injury (184-186).  In the past 

decade, the major emphasis has been on the mPTP and modulation of its opening 

(249-252).  However, emerging evidence suggests that other aspects related to the 

preservation of the function and structure of mitochondria (186, 187) (in addition to, in 

combination with, or instead of the status of the mPTP) may play a role in 

cardioprotection.  Recent specific attention has focused on mitochondrial dynamics, 

particularly, mitochondrial fission, as a mediator of cell fate in the setting of IR injury 

(188).  However, the role of mitochondrial fission in the pathogenesis of myocardial 

ischemia-reperfusion injury remains largely unexplored. In fact, only three previous 

publications have specifically and directly focused on the role of mitochondrial fission in 

IR (or HR) injury in myocyte or heart models (185, 216, 217). 
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2.1 Fission and cardioprotection 

In 2010, Ong and colleagues were the first to reveal that inhibition of 

mitochondrial fission, either by genetic modification of key proteins (transfection with 

mitofusins or a dominant-negative mutant of DRP1) or by pharmacologic inhibition of 

DRP1 with Mdivi-1, attenuated mitochondrial fragmentation (detected by electron 

microscopy) and reduced death caused by hypoxia-reoxygenation (assessed by trypan 

blue staining) in HL-1 cells and isolated adult rat cardiomyocytes.  In addition, 

pretreatment with Mdivi-1 was shown to reduce myocardial infarct size in the in vivo 

mouse model coronary artery occlusion-reperfusion (185).  However, Ong et al. 

provided no direct, biochemical evidence of DRP1 translocation to mitochondria in 

response to HR or IR, and no direct evidence that DRP1 translocation was inhibited by 

Mdivi-1 (or by protein transfection). 

In the current study, using cell fractionation and immunoblotting, we 

demonstrated the mechanistic link between DRP1 translocation, cytochrome c release 

into cytosol and apoptosis (reflected by increase in expression of cleaved caspase 3).  

Most importantly, we established a cause-effect relationship between DRP1 

translocation to mitochondria and cardiomyocyte injury in the setting of HR injury, and 

provided support for this finding using two different strategies (pharmacologic inhibition 

of DRP1 translocation with Mdivi-1 and genetic downregulation of DRP1 expression 

with siRNA; Chapters 4 and 5).   

Our results are consistent with related studies, in which DRP1 dephosphorylation 

and translocation to mitochondria were inhibited as a result of genetic manipulation of 

other targets.  For example, in 2011, Wang et al., found that overexpression of 

microRNA 499: i) down-regulated the expression of calcineurins, the key phosphatases 
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responsible for DRP1 dephosphorylaton and activation (198, 253), which had the effect 

of ii) attenuating mitochondrial translocation of DRP1, and iii) was associated with 

increased cardiomyocyte viability and reduced infarct size (196).  A second example is 

provided by Din et al. (254), who manipulated Pim-1 (proviral integration site for 

Moloney murine leukemia virus), a proto-oncogene that encodes a serine/threonine-

protein kinase that plays multiple roles in cell survival, proliferation and differentiation. 

Using transgenic mice over-expressing wild-type or dominant-negative Pim-1, Din and 

colleague found that manipulation of wild-type Pim-1 decreased the expression of DRP1 

and increased phosphorylation of DRP1,  while over-expression of dominant-negative 

Pim-1 increased total DRP1, decreased DRP1 phosphorylation  and augmented the 

translocation of DRP1 to mitochondria (254).  These effects of dominant-negative Pim-1 

were rescued by over-expressing a dominant-negative form of PUMA (p53 upregulated 

modulator of apoptosis); dominant-negative PUMA attenuated DRP1 translocation to 

mitochondria, blunted mitochondrial fission and rescued cardiomyocyte death caused 

by glucose deprivation + cyanide treatment (254).   

In contrast, complex results from Kim and colleagues are more difficult to 

interpret (195).  In non-cardiac cell lines (e.g., NIH3T3, mouse embryonic fibroblast and 

HEK293 cells), Siah1a/2 (seven in absentia homolog 1a/2; an E3 ubiquitin-protein 

ligase) was shown to degrade the mitochondrial scaffolding protein AKAP121 (A-kinase 

anchor protein 121) in the setting of hypoxia.  AKAP121 reportedly increases the 

phosphorylation (and thus inhibits) DRP1 in mitochondrial fractions and prevents its 

interaction with FIS1, thus attenuating mitochondrial fission.  Changing the focus to 

heart, Kim et al. found that deletion of Siah2 in transgenic mice attenuated infarct size at 

24 hours following permanent coronary artery occlusion. In addition, knockdown of 
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Siah2 and DRP1 in H9C2 cells mitigated mitochondrial fragmentation and increased cell 

viability following simulated IR, while knockdown of AKAP121 exacerbated 

mitochondrial fission and cell injury (195).  However, in non-cardiac cell lines, 

overexpression of AKAP121 increased the expression of non-phosphorylated DRP1 in 

the heavy-membrane mitochondrial fraction, an effect that, surprisingly, was not 

accompanied by an increase in the fragmented mitochondrial phenotype (195).    

2.2 Timing of Mdivi-1 treatment 

All studies discussed to this point have implemented pharmacologic 

treatment/genetic approaches to inhibit DRP1 translocation as a pre-treatment.  With 

the exception of two very recently published studies (216, 217), the effect of inhibition of 

DRP1 translocation and mitochondrial fission, initiated in a therapeutically relevant 

manner (at reoxygenation) has not been explored.  Therefore, we tested the hypothesis 

that inhibition of DRP1 at reoxygenation will also be protective, although possibly less 

robust than pretreatment, by giving Mdivi-1 at relief of hypoxia.   

Our results do not support this hypothesis.  We first found that 50 µM of Mdivi-1 

(same dose that was protective when given as a pretreatment), administered at 

reoxygenation and maintained in the media for 24 hours post-R, attenuated caspase 3 

cleavage and apoptosis but, paradoxically, increased (rather than decreased) total cell 

death.  This unexpected observation was made in Chapter 6, and, in separate 

experiments, confirmed in Chapter 7.  As a possible explanation, we speculated that 

this exacerbated cell death may be a toxic effect explained by either prolonged 

exposure (24 hours versus 1 hour in the pretreatment experiments), or an increase in 

permeability of HL-1 cells following hypoxia-reoxygenation and thus a greater than 

expected dose delivered to the cells.  As alternative strategies, we shortened the 
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exposure to 50 µM Mdivi-1 to only the first 1 hour of reoxygenation, or treated with lower 

concentrations of Mdivi-1 (5 and 10 µM) throughout the 24 hours of reoxygenation.  The 

alternative doses had no effect of total cell viability by trypan blue staining when 

compared with vehicle; the doses were neither toxic nor protective.  However, as seen 

with 24 hour exposure to 50 µM Mdivi-1, 1 hour of incubation with 50 µM Mdivi-1 had 

significantly reduced the production of cleaved caspase 3. 

In contrast, in two recent studies both inhibition of DRP1 before hypoxia, and 

DRP1 inhibition initiated at reperfusion, were reported to be cardioprotective (216, 217).   

In one study, Mdivi-1 (25 µM) was used as the inhibitor (217) while, in the second, P110 

(a short peptide inhibitor of mitochondrial fission that acts by mimicking the homologous 

sequence between DRP1 and FIS1 and blocks their interaction (255)), conjugated to 

TAT-carrier to enhance cell penetration, was administered (216).  When examining 

these studies and focusing on the protocols in which treatment was begun at 

reoxygenation, we found three major differences from our experiments that may 

contribute to the different results: i) both studies used in vivo or ex vivo perfused heart 

ischemia-reperfusion models; ii) the ischemic time was relative short, 30 mins, 

compared with our 2 hours of hypoxia; and iii) the major endpoints used to evaluate the 

beneficial effects were recovery of ventricular function and improved bioenergetics, 

rather than cell viability or infarct size  (216, 217).  However, the specific reason for the 

difference in outcomes is not known. 

2.3 Mdivi-1, necroptosis and hypoxia-reoxygenation injury 

Finally, to investigate if necroptosis (refer to Chapter 1, Section 2.2.3), may 

participate in the exacerbated cell death seen when 50 µM Mdivi-1 was given at 

reoxygenation, HL-1 cells were treated with either Mdivi-1 alone or Mdivi-1 + 
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Necrostatin-1, an inhibitor of RIP1.  Our results showed that co-administration of 

Necrostatin-1 partially rescued HL-1 cardiomyocyte death associated with prolonged 

posthypoxic Mdivi-1 incubation, supporting a possible role of programmed necrosis.  

Our studies also indicated that Necrostatin-1 alone, given at reoxygenation did not 

change viability.  This appears to disagree with previous studies, in which application of 

Necrostatin-1 provided cytoprotection against oxidative and ischemic insults (243-245).  

For example, Necrostain-1, administered 5 min before (243) or at the end of a 30 min 

period of coronary artery occlusion (83, 242)  significantly reduced infarct size in murine 

hearts, with the proposed mechanism of cardioprotection attributed to inhibited 

phosphorylation and interaction of RIP1 and RIP3 (243). In other reports showing 

protection with Necrostatin-1: i) cardiomyocytes were stressed with peroxide instead of 

hypoxia or ischemia (244); ii) Necrostatin-1 was administered before ischemia (245); 

and iii) studies were conducted in non-cardiac tissues (237-240), e.g., kidney and 

neuronal studies. Given these differences among protocols, additional investigation will 

be required to identify the reasons for the discrepancy.    

3. Technical Limitations 

The most obvious potential limitation of this work is that all experiments in the 

current study were conducted using HL-1 cells, an immortal murine cardiac muscle cell 

line.  The merits of using this model are evident, e.g., i) ample amounts of tissue are 

available for technical troubleshooting and refining the study design (i.e., optimizing 

immunoblotting protocols for the key proteins involved in fission); ii) the study does not 

rely on the use of animals; and iii) unlike studies conducted in intact hearts, it provides a 

‘pure’ system for mechanistic studies that is not influenced or contaminated by the 

presence of other cell types.  However, our hypotheses will require future testing and 
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confirmation in primary cardiomyocyte cultures and in vivo.  A second potential concern 

is the limitations involved in the use of pharmacologic inhibitors (Mdivi-1, Necrostatin-1) 

and the possibility of non-specific effects.  For Mdivi-1, this concern was addressed by 

our second, genetic approach with siRNA, and is diminished by the fact that consistent 

results were obtained with both strategies.  Third, as shown in the Appendix, we 

acknowledge that our subcellular fractionation protocol collected only ~1/3 of all 

mitochondria.  While this is a standard yield that is considered acceptable, it is possible 

that the other 2/3 of the mitochondria that were not collected by our fractionation 

protocol may represent a specific population that may differ from those evaluated by our 

protocols.  Finally, while we investigated Mdivi-1 given only before hypoxia, and given 

only at reoxygenation, we did not assess the effects of Mdivi-1 (and possible importance 

of fission) during hypoxia.  This omission was due to a technical constraint: Mdivi-1 is 

not soluble in the ischemic buffer.   

4. Conclusion and Future Directions 

The major conclusion of this dissertation work is that DRP1 translocation to 

mitochondria may play a mechanistic role in mediating cardiomyocyte injury in the 

context of hypoxia-reoxygenation injury.  It is important to acknowledge that the focus of 

the work was on DRP1 inhibition, mitochondrial fission and cardiomyocyte death, 

without exploring the relationship between mitochondrial fragmentation and other 

important and established mediators of cardiomyocyte IR injury, e.g., mPTP opening, 

ROS production and calcium overload (Refer to Chapter 1, Section 2).  In this regard, 

Ong et al. reported that inhibition of mitochondrial fission significantly delayed the time 

taken to induce mPTP opening in both HL-1 cells and primary adult rat cardiomyocytes 

(185).  The possibility for relationships among mechanisms probably extends beyond 
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fission and the mPTP, and may provide a basis for future, productive investigations.  

Finally, we focused entirely on mitochondrial fission; the other side of the complex 

phenomenon of mitochondrial dynamics, that is mitochondrial fusion, was not 

considered.  The effect of our protocols on expression of proteins that regulate 

mitochondrial fusion (e.g., MFN1/2 and OPA1) and the role of fusion in ischemia-

reperfusion injury, both warrant future study. 
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APPENDIX 

TECHNICAL CONSIDERATIONS 

1. Cell Fractionation, Mitochondrial Isolation and its Quality Control 

1.1 Rationale 

Owing to the pioneering work from George Palade (256) and later modification, 

functional, pure, high quality mitochondria can be isolated from tissues and cultured cell 

lines with high yield efficiency.  The three key factors that contribute to the quantity and 

quality of mitochondrial harvest are: i) appropriate mechanical disruption of the cells 

without causing damage to mitochondria; ii) the use of differential centrifugation to pellet 

mitochondria and avoid contamination from other cellular components with different 

sedimentation coefficients; and iii) use of a sucrose-based buffer to maintain functional 

and morphological integrity of harvested mitochondria for hours after isolation (220).  In 

the current research project, one of the major technical components is to isolate 

mitochondria in HL-1 cardiomyocyte and perform biochemical assessment of the key 

regulators of mitochondrial fission and apoptosis in total cell lysates and cytosolic and 

mitochondria-enriched heavy membrane (HM-Mito) fractions. Therefore, it is of critical 

importance to ensure that our mitochondrial isolation protocol does not introduce 

artifacts.  

A second issue that may affect our measurements is that mitochondria are highly 

dynamic organelles. Mitochondrial phenotype and size are determined by the balance 

between fission-promoting versus fusion-promoting factors, including, in our 

experiments, the administration of Mdivi-1, an antagonist of DRP1 inhibits mitochondrial 

fission.  Therefore, it is important to establish whether mitochondrial yield by our 

isolation protocol is affected by alterations in mitochondrial morphology. 

Finally, we use immunoblotting to identify the differential expression of target 

proteins among different sample groups (257).  The validity of the immunoblot method, 

and the quantitative measurement of protein expression, depends on accurate, equal 
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protein loading from each sample.  Therefore, multiple methods have been developed 

to ensure that there is equal protein loaded (258).  One method is to employ a high-

abundance housekeeping protein as loading control, e.g., GAPDH or beta actin.  For 

each sample, the intensity of the protein of interest is normalized to the intensity of its 

respective loading control; analysis and comparisons are performed using the final, 

normalized results.  Another approach is to use a total protein stain, e.g., amido black, 

to document equal protein loading, a technique that has been proposed to be more 

accurate for comparison of low-abundance proteins of interest (258).  

The purpose of this section of the Appendix is to describe the outcome of 

supplementary experiments performed to address these technical issues and establish 

that: i) our isolation protocol achieves an acceptable mitochondrial yield ; ii) the isolated 

mitochondria are  pure with low cross-contamination from other cellular components; 

and iii) our sucrose-based separation protocol is not affected by hypoxia-reoxygenation 

and the accompanying changes in mitochondrial morphology and size.  

1.2 Materials 

HL-1 cardiomyocyte cultures, all chemicals, reagents and antibodies used in this 

chapter are the same as those used in Chapters 3 and 4, if not annotated separately. 

1.3 Methods 

1.3.1 Evaluation of mitochondrial isolation efficiency and cross-contamination 

between fractions 

1.3.1.1 Evaluation of mitochondrial isolation efficiency with Mdivi-1 treatment 

and cross-contamination between fractions in normoxia 

HL-1 cardiomyocytes, grown to 90-95% confluence, were incubated with Mdivi-1 

(50 µM), DMSO vehicle or media alone as blank control.  The total incubation time was 

five hours to match the time course of the Mdivi-1 treatment experiment focusing on 

acute responses (Chapter 4, Section 3.2).  Cells were subsequently mechanically lysed 

with isolation buffer and the lysate was further separated into cytosolic and HM-Mito 

fractions by using the same protocol previously described (refer to Chapter 3, Section 
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3.3).   

Typically, when separating the lysate into the two subcellular fractions, the pellet 

obtained from the first low-speed centrifugation (500g × 5 min), considered to contain 

debris, is discarded.  To investigate whether mitochondria were present in this pellet, 

and yield was decreased by discarding the pellet, we dissolved the first pellet with 

isolation buffer containing 1% Triton X-100 and included this in the analysis.  

Immunoblotting was used to resolve the relative intensity of VDAC (a mitochondrial-

specific protein) and beta-actin (cytosolic protein) in cytosolic, HM-Mito and first-pellet 

fractions.  Additionally, anti-DRP1 antibody was used to detect the relative 

concentration of DRP1 in three fractions.  By comparing the intensity of VDAC, beta-

actin and DRP1 in all fractions in Mdivi-1, vehicle and blank control groups, we are able 

to identify i) the  percentage of mitochondria isolated by the protocol; ii) if the isolation is 

affected by the morphological change of mitochondria with Mdivi-1 treatment; and iii) the 

purity of the cytosolic and mitochondrial fractions. 

1.3.1.2 Cross-contamination between fractions with Mdivi-1 treatment in the 

context of hypoxia-reoxygenation  

HL-1 cardiomyocytes, grown to 90-95% confluence were subjected to 2 hours of 

hypoxia followed by reoxygenation. Prior to hypoxia, cells received 1 hour of incubation 

with Mdivi-1 (50 µM) or DMSO vehicle.  At 5 and 120 min post-R, cells were lysed and 

the lysate was separated to cytosolic and HM-Mito fractions.  To investigate the purity of 

each fraction, immunoblotting was used to resolve the relative intensity of VDAC and 

beta-actin.   

1.3.2 Loading control: housekeep genes versus total protein stain 

To test the concept that our use of VDAC and beta-actin to monitor equal protein 

loading was appropriate, and that the significant difference in DRP1 expression in 

different experimental groups was not an artifact of unequal loading, we performed 

additional experiments using the total protein stain, amido black. HL-1 cells were 

transfected with DRP1 siRNA for 48 hrs per the manufacturer’s protocol (refer to 
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Chapter 5, Section 3.1).  Cells were lysed with RIPA buffer supplemented with 1.5× 

protease inhibitor and 1.5× phosphatase inhibitor. Protein (10 µg) was loaded and 

immunoblotting was used to detect DRP1 expression in DRP1 siRNA, scrambled siRNA 

and blank control groups.  After transfer, one membrane blot was stained with amido 

black, and the stain was scanned.  The blot was then washed in TBST and blocked with 

5% milk-TBST.  A second blot was directly blocked with 5% milk-TBST without staining 

with amido black.  Antibodies against beta-actin and DRP1 were employed to detect the 

expression of these two proteins in both blots.  Finally, the relative concentration of 

DRP1 was compared based on normalization to beta-actin or amido black staining as 

the index of total protein loaded.  

In another set of experiments, HL-1 cardiomyocytes, grown to 90-95% 

confluence were subjected to 2 hours of hypoxia + reoxygenation; normoxic cells were 

maintained in SFCC.  Cells were subsequently lysed and lysate was separated to 

cytosolic and HM-Mito fractions.  Protein (35 µg) from the HM-Mito fraction was loaded 

in each well.  Prior blocking with 5% milk-TBST, the membrane blot was first stained 

with amido black and the intensity of staining was recorded.  Subsequently, 

immunoblotting is used to resolve the relative expression of VDAC and DRP1 in the 

HM-Mito fraction. 

1.4 Results 

1.4.1 Our isolation protocol produces high yield of mitochondrial with minimal 

cross-contamination between fractions 

1.4.1.1 Yield is not affected by Mdivi-1 incubation and ~1/3 of the mitochondria 

are collected by our protocol in normoxia  

Our Immunoblot results (Figure AP-1, bottom lane) showed that VDAC, the 

marker of mitochondria, was only present in the first pellet and HM-Mito fractions, with 

no signal in cytosolic fraction.  In addition, there was an ~equal intensity of VDAC in the 

first pellet and HM-Mito fractions from all samples (Mdivi-1-treated, vehicle-treated and 

blank control groups).  These data provide evidence that cytosolic fraction is not 
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contaminated by mitochondrial proteins, and Mdivi-1 administration does not affect the 

mitochondrial harvest.  Further, the immunoblots of beta-actin showed minimal 

contamination of the HM-Mito fraction by cytosolic protein (Figure AP-1, top lane).   

 
Figure AP-1. Mitochondrial isolation is not affected by Mdivi-1 treatment.  Original immunoblots of 
beta-actin (top panel) and VDAC (bottom panel) in HL-1 cells incubated for five hours under normoxic 
condition with 50 µM Mdivi-1, vehicle or media alone.  Results obtained in the cytosolic, HM-Mito and first 
pellet fractions are shown in the three panels, respectively.  VDAC only appears in HM-Mito and first 
pellet fractions, and there is equal intensity of VDAC expression across the three treatments.  Moreover, 
only a weak beta-actin signal (indicative of contamination with cytosol) was detected in HM-Mito fraction. 

Finally, using the protein concentration and volume of each sample  (Table AP-1), 

we calculated that we collected ~1/3 of the mitochondria with our protocol. 

 
Table AP-1. Calculation of yield: 

 (~1/3 of mitochondria were isolated with our protocol.) 
 
 
1.4.1.2 DRP1 is not lost during fractionation  

The immunoblot result of DRP1 showed that, under normoxic conditions, the 

DRP1 signal was located almost entirely in the cytosolic fraction, although we collected 

~1/3 of mitochondria in the HM-Mito fraction (Figure AP-2). 

 

Fractions [Protein, µg/µL] Volume (µL) VDAC 
intensity

Ratio of each 
fraction 

Cytosol 2.15±0.07 400 N/A N/A 

HM-Mito 1.27±0.14 100 

Equal 

0.43 

First Pellet 0.73±0.06 400 1.00 
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Figure AP-2. Under normoxic conditions: DRP1 was not ‘lost’ in the first pellet.  Although we 
collected ~1/3 of the mitochondria in the HM fraction, the majority of DRP1 was expressed in the cytosolic 
fraction. Original immunoblots of DRP1 in HL-1 cells incubated for five hours under normoxic conditions 
with 50 µM Mdivi-1, vehicle or media alone.  Results obtained in the cytosolic, HM-Mito and first pellet 
fractions are shown in the three panels, respectively.  Although we collected ~1/3 of the mitochondria in 
the HM fraction, the majority of DRP1 was expressed in the cytosolic fraction. 
 

1.4.1.3 Minimal cross-contamination is maintained with Mdivi-1 treatment in the 

setting of hypoxia-reoxygenation 

In sections 1.4.1.1 and 1.4.1.2, we demonstrated that, under normoxia: i) we 

harvested ~1/3 of the mitochondria with our isolation protocol and had minimal cross-

contamination between fractions; and ii) the yield and purity of each fraction was not 

affected by Mdivi-1 administration.  It is also important to establish that, under 

conditions of hypoxia-reoxygenation, Mdivi-1 does not decrease the purity of each 

fraction.  Immunoblot results in Figure AP-3 show minimal contamination of the HM-Mito 

fraction by cytosol (indicated by the weak beta-actin signal in HM-Mito fraction).  i.e., 

Purity of the fractions is maintained following hypoxia-reoxygenation, and is not affected 

by Mdivi-1 administration (Figure AP-3). 

 

Figure AP-3. Minimal cross-
contamination is maintained with 
Mdivi-1 treatment in the setting of 
hypoxia-reoxygenation. Original 
immunoblots of beta-actin (top 
panels), and VDAC (bottom panels) 
in HL-1 cells subjected to i) normoxia; 
or ii) 2 hours hypoxia followed by 5 
min or 2 hours reoxygenation.  
Results obtained in the cytosolic (Gel 
#1) and HM-Mito (Gel #2) fractions 
are shown, respectively. 
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1.4.2 Housekeeping genes and total protein stains as loading control 

1.4.2.1 Beta-actin and total protein staining showed equal protein loading for 

whole-cell lysate 

As expected, DRP1 expression at 48 hours post-transfection was significantly 

reduced in the DRP1 siRNA group when compared with either blank control or 

scrambled siRNA (top lanes of the left panel, Figure AP-4).  The beta-actin signal 

showed that an equal amount of protein was in each lane, and the obvious difference in 

DRP1 signal is not due to poor protein loading.  In the bottom lanes of the left panel, 

incubation with antibody was performed following amido black staining.  Both the beta-

actin signal (bottom lanes of left panel, Figure AP-4) and total protein staining (right 

panel, Figure AP-4) showed that protein was equally loaded in each well, with no 

apparent superiority of the amido black method. Most importantly, the difference in 

DRP1 expression was not explained by unequal loading.   

Figure AP-4.  Beta-actin and 
total protein staining both 
confirmed equal protein 
loading with whole-cell lysate. 
Left panel: original immunoblots 
of DRP1 and beta-actin (top and 
bottom rows of each pair, 
respectively) in HL-1 cells 
transfected and maintained under 
normoxic conditions with DRP1 
siRNA, scrambled siRNA and 
media alone (blank).  Results 
were obtained from whole cell 
lysates at 48 hours post-
transfection.   Right panel: amido 
black stain of membrane blot 
transferred from Gel #2. Both 
beta-actin and total protein stain 
showed equal protein loading. 

 
1.4.2.2 VDAC and total protein staining showed equal protein loading in the 

HM-Mito fraction 

As shown in Figure AP-5 (left) and as expected, hypoxia-reoxygenation triggered 

DRP1 translocation to mitochondria.  Both the VDAC signal and total protein staining 

(Figure AP-5, right) showed equal protein loading, and confirm that the difference in 

Scramble 
siRNA 

Without Amido Black

With Amido Black 

Blank 

Gel #1 

DRP1 
siRNA 

Gel #2 
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DRP1 signal between normoxic controls and the HR groups is not due to unequal 

protein loading. 

Figure AP-5. VDAC and total 
protein staining both 
confirmed equal protein 
loading from the HM-Mito 
fraction. Left panel: original 
immunoblots of DRP1 and 
VDAC (top and bottom rows, 
respectively) in HL-1 cells 
subjected hypoxia-
reoxygenation.  Results were 
obtained in the HM-Mito 
fractions.  Right panel: amido 
black stain of membrane blot 
transferred from the same gel 
shown in the left panel. Both 
VDAC and total protein 
staining showed equal protein 
loading. 

2. Hue Analysis 

2.1 Rationale 

One of the goals of the experiments reported in Chapter4 was to quantify the 

association of DRP1 with mitochondria at 24 hours following reoxygenation (late 

responses), with and without Mdivi-1 treatment.  We used three separate methods to 

address this issue; immunoblotting for DRP1, as well as co-localization (using ImageJ) 

and hue analysis (using SigmaScan) of  red and green  signals in cells stained with 

fluorescent antibodies and viewed by confocal microscopy (refer to Chapter 4, Section 

3.7.3).  Both immunoblotting and co-localization analysis are standard and well-

established techniques.  Additional description of the principles of the lesser-described 

method, hue analysis, is provided below, in order to assist in understanding the results 

of Chapter 4, Section 4.3.4   

2.2 Principle of hue analysis 

Hue analysis is based on the optical principle that color images are composed of 

256 hues (Figure AP-6).  Using merged confocal images in which both mitochondria 

(red) and DRP1 (green) were visualized, the numbers of red, green and yellow pixels 
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(as objectively defined in Figure AP-6) were quantified using SigmaScan 5.0 (Systat 

Software  Inc.,  San  Jose,  CA).  Red  + yellow  pixels represent the total  mitochondrial 

 

signal, green + yellow pixels represent the total DRP1 signal, while yellow pixels 

(overlap of red and green) reflect the proportion of the DRP1 signal spatially associated 

with the mitochondrial signal.  Accordingly, to quantify the spatial association of DRP1 

with mitochondria, we calculated the percentage of yellow pixels occupied by both red 

and green pixels normalized to either: i) red + yellow pixels (total mitochondrial signal); 

or ii) green + yellow pixels (total DRP1 signals) (Figure AP-6).  As discussed in Chapter 

4, the outcome of the hue analysis was consistent with both the immunoblot data and 

standard co-localization analysis.  

 

Hue 
1 256 

Sa
tu
ra
ti
o

Figure AP-6. Principle of hue analysis 
Optical principle: color image composed of 256 hues (red, green, blue) 
Merged IF images: red (mitochondria) + green (DRP1) 
Goal: quantify the number yellow pixels (overlap of green and red fluorescent signals) 

red + yellow = total mitochondrial signal = hue 2 to 45 
yellow + green = total DRP1 signal = hue 37 to 85 
yellow = hue 37 to 45 

 
SigmaScan: obtain hue histogram 
Tabulate # of pixels for each of the 256 hues 
For merged IF images (no blue), hue 2 to 85 
Quantify: 

number of red + yellow pixels: sum of hue 2 to 45 
number of yellow + green pixels: sum of hue 37 to 85 
number of yellow pixels: sum of hue 37 to 45 

Calculate: 
  (yellow pixels) / (red + yellow pixels) * 100% 
  (yellow pixels) / (yellow + green pixels) * 100% 
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ABSTRACT 
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Degree: Doctor of Philosophy 

Mitochondrial fusion and fission, collectively termed mitochondrial dynamics, are 

among the core mechanisms responsible for maintaining mitochondrial health and 

functional integrity.  Dynamin-related protein 1 (DRP1) is a key regulator of 

mitochondrial fission.  Recent studies suggest that i) mitochondrial dynamics, 

particularly, mitochondrial fission, serves as a mediator of cell fate in the setting of 

ischemia-reperfusion (IR) injury, and, ii) inhibition of DRP1 and mitochondrial fission 

provides cardioprotection against IR injury.  However, the precise role of DRP1 

translocation to mitochondria in the pathogenesis of myocardial ischemia-reperfusion 

injury has not been established.   

Using an established model of hypoxia-reoxygenation (HR) in cultured HL-1 

cardiomyocytes, we tested three hypotheses: 

i. subcellular redistribution of DRP1 is i) triggered by HR, and ii) plays a 

mechanistic role in HR-induced cytochrome c release and cell apoptosis;  

ii. inhibition of DRP1 translocation prior to hypoxia is cardioprotective; 

iii. inhibition of DRP1 in a time-frame that is relevant as a therapeutic strategy (i.e., 

begun at reoxygenation) will also attenuate cardiomyocyte death, although 
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possibly less robust than pretreatment. 

In support of Hypothesis I, our results demonstrated that HR was associated with 

DRP1 translocation to mitochondria, cytochrome c release into cytosol, and caspase 3 

cleavage (harbinger of apoptosis).  Subsequently, and consistent with Hypothesis II, we 

established a cause-effect relationship between DRP1 translocation and cardiomyocyte 

injury in the setting of HR injury.  Both pretreatment with Mdivi-1 (a specific inhibitor of 

DRP1; 50 µM) and knockdown of DRP1 expression by transfection with DRP1 siRNA 

significantly reduced DRP1 translocation to mitochondria, attenuated cytochrome c 

release, blunted caspase 3 cleavage and apoptotic cell death, better-preserved 

mitochondrial morphology and improved cell viability.  However, in contrast to 

Hypothesis III, Mdivi-1 given at reoxygenation, was not cardioprotective.  Rather, we 

observed a paradoxical result: Mdivi-1, given at reoxygenation, attenuated apoptosis, 

but did not reduce total cell death and, in some cases (prolonged exposure at a dose of 

50 µM) exacerbated cell death.  This exacerbated cell death with delayed Mdivi-1 

treatment was in part rescued by co-administration of Necrostatin-1, suggesting that 

necroptosis (programmed necrosis) may play a role in this phenomenon.  In conclusion, 

our results show that DRP1 translocation to mitochondria plays a mechanistic role in 

mediating cardiomyocyte injury in the context of hypoxia-reoxygenation injury, and 

reveal a complex temporal relationship between inhibition of mitochondrial fission and 

cardioprotection. 
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